Những câu hỏi liên quan
NT
Xem chi tiết
NL
2 tháng 9 2021 lúc 12:17

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)

\(\Rightarrow\left(2x-1\right)^2< 3\) (1)

\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))

- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)

\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)

Bình luận (0)
NT
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 11 2018 lúc 9:12

a = 5;        b’ = 2;        c = -1;

Δ ’   =   ( b ' ) 2   -   a c   =   2 2   -   5 . ( - 1 )   =   9 ;          √(Δ') = 3

Nghiệm của phương trình:

Giải bài tập Toán 9 | Giải Toán lớp 9

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 12 2019 lúc 16:24

a = 5;        b’ = 2;        c = -1;

Δ’ = (b')2 - ac = 22 - 5.(-1) = 9;        √(Δ') = 3

Nghiệm của phương trình:

Giải bài tập Toán 9 | Giải Toán lớp 9

Bình luận (0)
MT
Xem chi tiết
PB
Xem chi tiết
CT
8 tháng 8 2018 lúc 12:13

Ta có: 2 x y + y 2 − 4 x − 3 y + 2 = 0 x y + 3 y 2 − 2 x − 14 y + 16 = 0 ⇒ 2 x y + y 2 − 4 x − 3 y + 2 = 0 2 x y + 6 y 2 − 4 x − 28 y + 32 = 0

⇒ 5 y 2 − 25 y + 30 = 0 ⇒ y = 3 ; y = 2

Khi y = 3  thì phương trình đầu trở thành  6 x + 9 - 4 x - 9 + 2 = 0 ⇔ x = - 1

Khi  y = 2  thì phương trình đầu trở thành  4 x + 4 - 4 x - 6 + 2 = 0

⇔ 0 x = 0 ⇔ x ∈ R

Đáp án cần chọn là: A

Bình luận (0)
DL
Xem chi tiết
HN
30 tháng 5 2016 lúc 20:47

\(2xy-4x-y=1\Rightarrow2xy-4x-y+2=3\Rightarrow2x\left(y-2\right)-\left(y-2\right)=3\Rightarrow\left(2x-1\right)\left(y-2\right)=3\)

Vì x,y là nghiệm nguyên nên ta xét các trường hợp : 

1. \(\hept{\begin{cases}2x-1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

2. \(\hept{\begin{cases}2x-1=3\\y-2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

3. \(\hept{\begin{cases}2x-1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

4. \(\hept{\begin{cases}2x-1=-3\\y-2=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy nghiệm của phương trình là : \(\left(x;y\right)=\left(-1;1\right);\left(0;-1\right);\left(1;5\right);\left(2;3\right)\)

Bình luận (0)
NM
30 tháng 5 2016 lúc 20:50

2xy-4x-y=1

x(2y-4)-y=1

2x(2y-4)-2y=2

2x(2y-4)-2y+4=6

2x(2y-4)-(2y-4)=6

(2y-4)(2x-1)=6

Đến đây, ta thấy 2x-1 là ước lẻ của 6 =>2x-1 E { 1;3 }

Với 2x-1=1 thì 2y-4=6 =>x=1, y=5

Với 2x-1=3 thì 2y-4=2 =>x=2, y=3

Em mới học lớp 6 nên chỉ làm theo cách lớp 6 thôi. Còn nghiệm nguyên thì em chưa học

Bình luận (0)
H24
30 tháng 5 2016 lúc 21:05

2xy-4x-y=1

x(2y-4)-y=1

2x(2y-4)-2y=2

2x(2y-4)-2y+4=6

2x(2y-4)-(2y-4)=6

(2y-4)(2x-1)=6

Đến đây, ta thấy 2x-1 là ước lẻ của 6 =>2x-1 E { 1;3 }

Với 2x-1=1 thì 2y-4=6 =>x=1, y=5

Với 2x-1=3 thì 2y-4=2 =>x=2, y=3

Bình luận (0)
HL
Xem chi tiết
DH
7 tháng 6 2017 lúc 10:59

\(2xy-4x+y-9=0\)

\(\Leftrightarrow2x\left(y-2\right)+\left(y-2\right)-7=0\)

\(\Leftrightarrow\left(2x+1\right)\left(y-2\right)=7\)

\(\Rightarrow2x+1\) và \(y-2\) là ước của 7

đến đây dễ rồi tự làm nha

Bình luận (0)
H24
6 tháng 6 2017 lúc 10:23

x=0 và y=9 ; x=3 và y=3 

x=-1 và y=-5 ; x=-4 và y=1

đúng ko nhỉ

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 11 2017 lúc 7:36

a)  5 x 2   –   x   +   2   =   0 ;

a = 5; b = -1; c = 2

Δ   =   b 2   -   4 a c   =   ( - 1 ) 2   -   4 . 5 . 2

= 1 - 40 = -39 < 0

Vậy phương trình trên vô nghiệm.

b) 4 x 2   –   4 x   +   1   =   0 ;

a = 4; b = -4; c = 1

Δ   =   b 2   -   4 a c   =   ( - 4 ) 2 -   4 . 4 . 1   =   16   -   16   =   0

⇒ phương trình có nghiệm kép

x = (-b)/2a = (-(-4))/2.4 = 1/2

Vậy phương trình có nghiệm duy nhất x = 1/2

c)  - 3 x 2   +   x   +   5   =   0

a = -3; b = 1; c = 5

Δ   =   b 2   -   4 a c   =   12   -   4 . ( - 3 ) . 5   =   1   +   60   =   61   >   0

⇒ Do Δ >0 nên áp dụng công thức nghiệm, phương trình có 2 nghiệm phân biệt

x 1   =   ( 1   -   √ 61 ) / 6 ;   x 2   =   ( 1   +   √ 61 ) / 6

Bình luận (0)