Những câu hỏi liên quan
NL
Xem chi tiết
NT
5 tháng 3 2022 lúc 21:23

\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)

\(=16m^2-16m-8\)

Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)

 

Bình luận (1)
 Nguyễn Huy Tú đã xóa
NT
5 tháng 3 2022 lúc 21:27

\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+1-8m-12\)

\(=16m^2-16m-11\)

Để pt có 2 nghiệm pb khi \(16m^2-16m-11>0\)

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 4 2022 lúc 22:41

\(\text{Δ}=\left(2m+2\right)^2-4\left(m+3\right)\)

\(=4m^2+8m+4-4m-12\)

\(=4m^2+4m-8\)

\(=4\left(m+2\right)\left(m-1\right)\)

Để phương trình có hai nghiệm phân biệt thì (m+2)(m-1)>0

=>m>1 hoặc m<-2

Theo đề, ta có: 2(m+1)>2

=>m+1>1

hay m>0

=>m>1

Bình luận (0)
HN
Xem chi tiết
NT
7 tháng 2 2023 lúc 8:34

Δ=(2m+2)^2-4*4m

=4m^2+8m+4-16m

=4m^2-8m+4

=(2m-2)^2>=0

Để ohương trình có hai nghiệm phân biệt cùng lớn hơn 1 thì

2m-2<>0 và 2(m+1)>0 và 4m>0

=>m>0 và m<>1

Bình luận (1)
SS
Xem chi tiết
LH
28 tháng 5 2021 lúc 22:25

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Bình luận (0)
H24
28 tháng 5 2021 lúc 22:29

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

Bình luận (0)
HN
Xem chi tiết
H24
31 tháng 8 2021 lúc 18:42

ta có \(\Delta\)'=(m-1)^2-3m+3=m^2-2m+1-3m+3=m^2-5m+4>/=0=>m</=1;m>/=4

pt cos 2 no âm pb=>\(\left\{{}\begin{matrix}S< 0\\P>0\\\Delta\ge0\end{matrix}\right.\)=>.....

Bình luận (0)
YK
Xem chi tiết
MH
19 tháng 3 2023 lúc 20:24

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

Bình luận (0)
PT
Xem chi tiết
NH
Xem chi tiết
PA
16 tháng 4 2021 lúc 19:50

Điều kiện:

\(\Delta=\left(m^2+1\right)^2-4\left(m^2-7m+12\right)>0\)

\(\Leftrightarrow m^4+2m^2+1-4m^2-28m+48>0\)

\(\Leftrightarrow m^4-2m^2-28m+49>0\)

rồi giải ra m nhá 

Bình luận (0)
NN
Xem chi tiết
HT
17 tháng 3 2022 lúc 20:01

ê phải n.nam 9c ko

 

Bình luận (0)