Những câu hỏi liên quan
NA
Xem chi tiết
PT
29 tháng 5 2021 lúc 12:37

a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12

= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x

= 6x4 - 17 + 6x3 - 5x

= 6x4 + 6x3 - 5x - 17

B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2

= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2

= 4x4 + 6x3 - 5x - 15 - 2x2

= 4x4 + 6x3 - 2x2 - 5x - 15

b) C(x) = A(x) - B(x)

=  6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)

= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15

= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2

= 2x4 - 2 + 2x2 

= 2x4 + 2x2 - 2

Bình luận (0)
PD
Xem chi tiết
HS
30 tháng 6 2020 lúc 19:52

a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12(cái phần A(x) sửa lại đii )

=> A(x) = (5x4 + x4) + (-5 - 12) + 6x3 - 5x

=> A(x) = 6x4 - 17 + 6x3 - 5x

Sắp xếp : A(x) = 6x4 + 6x3 - 5x - 17

B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2

=> B(x) = (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2

=> B(x) = 6x4 + 6x3 - 5x - 15 - 2x2

Sắp xếp : B(x) = 6x4 + 6x3 - 2x2 - 5x - 15

b) * Tính A(x) + B(x)

A(x)            = 6x4 + 6x3           - 5x - 17

B(x)            = 6x4 + 6x3  - 2x2 - 5x - 15

A(x) + B(x) = 12x+ 12x3 - 2x2 - 10x - 32

Đến đây bạn tìm nghiệm thử coi :v

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
DL
10 tháng 4 2018 lúc 20:46

dễ thế mà cũng hỏi

Bình luận (0)
TA
Xem chi tiết
HP
Xem chi tiết
NT
17 tháng 4 2022 lúc 18:56

Giả sử:\(P\left(x\right)=0\)

\(\Rightarrow8x^2-5x-\left(-1\right)=0\)

\(8x^2-5x+1=0\)

Ta có:\(8x^2-5x+1=\left(\dfrac{5}{2}x\right)^2-2.\dfrac{5}{2}x.1+1^2+\dfrac{7}{4}x^2=\left(\dfrac{5}{2}x+1\right)^2+\dfrac{7}{4}x^2>0;\forall x\)

=> pt vô nghiệm

Bình luận (1)
NQ
Xem chi tiết
PQ
8 tháng 4 2018 lúc 10:59

\(b)\) Ta có : 

\(7x^2-8x-15=0\)

\(\Leftrightarrow\)\(\left(7x^2+7x\right)-\left(15x+15\right)=0\)

\(\Leftrightarrow\)\(7x\left(x+1\right)-15\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\left(7x-15\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}7x-15=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=15\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{15}{7}\\x=-1\end{cases}}}\)

Vậy nghiệm của đa thức \(g\left(x\right)=7x^2-8x-15\) là \(x=\frac{15}{7}\)  hoặc \(x=-1\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
8 tháng 4 2018 lúc 10:44

\(a)\) Ta có : 

\(2x^2-5x+3=0\)

\(\Leftrightarrow\)\(\left(2x^2-2x\right)+\left(-3x+3\right)=0\)

\(\Leftrightarrow\)\(2x\left(x-1\right)+\left(-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(2x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)

Vậy nghiệm của đa thức \(f\left(x\right)=2x^2-5x+3\) là \(x=\frac{3}{2}\) hoặc \(x=1\)

Chúc bạn học tốt ~ 

Bình luận (0)
NQ
30 tháng 4 2018 lúc 11:34

Thanks bạn nhìu!!  ^_^

Bình luận (0)
NA
Xem chi tiết
PD
Xem chi tiết
H24
29 tháng 6 2020 lúc 21:42

\(a.A(x)=5x^4-5+6x^3+x^4-5x-12\)

\(=(5x^4+x^4)+6x^3-5x-5-12\)

\(=6x^4+6x^3-5x-17\)

\(B(x)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=(8x^4-2x^4)+(2x^3+4x^3)-2x^2-5x\)

\(=6x^4+6x^3-2x^2-5x\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 6 2020 lúc 15:49

a, Ta có \(A\left(x\right)=5x^4-5+6x^3+x^4-5x-12\)

\(=6x^4-17+6x^3-5x\)

\(B\left(x\right)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=6x^4-5x+6x^3-2x^2\)

Sắp xếp : \(A\left(x\right)=6x^4+6x^3-5x-17\)

\(B\left(x\right)=6x^4+6x^3-2x^2-5x\)

b, Ta có : \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)(thề, đề sai, cho trừ khác ra bn nhé nhưng cx tôn trọng đề vậy =)) 

\(\Leftrightarrow C\left(x\right)=6x^4+6x^3-5x-17+6x^4+6x^3-2x^2-5x\)

\(\Leftrightarrow C\left(x\right)=12x^4+12x^3-10x-17\)

=> vô nghiệm =)) 

Bình luận (0)
 Khách vãng lai đã xóa
HK
Xem chi tiết
TW
1 tháng 5 2018 lúc 17:57

ta có: H(x) = 5x^3 + 2 + 8x^2 - 8x^3 - 5x^2 - 6 - 3x^2

          H(x) = - ( 8x^3 - 5x^3) + ( 8x^2 - 5x^2 - 3x^2 ) - ( 6-2)

          H(x) = - 3 x^3 - 4

Cho H(x) = 0

=> - 3 x^3 - 4 = 0

       -3x^3      = 4

          x ^3 = -4/3

         

Bình luận (0)
TD
1 tháng 5 2018 lúc 17:58

H(x) = 5x+2+8x2-8x3-5x2-6-3x2

H(x) = ( 5x3 - 8x3 ) + ( 8x2 - 5x2 - 3x2 ) + ( 2 - 6 )

H(x) = -3x3 - 4

Để H(x) có nghiệm thì -3x3 - 4 = 0

\(\Rightarrow\)x3 = \(\frac{4}{-3}\)\(\Rightarrow\)x = \(\sqrt[3]{\frac{4}{-3}}\)

Bình luận (0)