Những câu hỏi liên quan
DY
Xem chi tiết
H24
Xem chi tiết
NL
13 tháng 8 2016 lúc 8:16

\(A=4+4^2+4^3+...+4^{100}\)

\(A=\left(4+\text{ }4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=\left(1+4\right).\left(4\right)+\left(1+4\right).\left(4^3\right)+...+\left(1+4\right).\left(4^{99}\right)\)

\(A=5.\left(4+4^3+4^5+...+4^{99}\right)\)

Vậy A chia hết cho 5

Các bạn nha!

Bình luận (0)
LG
Xem chi tiết
TN
11 tháng 10 2015 lúc 7:50

    5+5^2 +5^3 +5^4...+5^99+5^100

= ( 5+5^2)+(5^3+5^4)+....+(5^99+5^100)

= 5(1+5)+5^3(1+5)+....+5^99(1+5)

=  5.6+5^3.6+....+5^99.6

= (5+5^3+....+5^99).6

Vì  (5+5^3+....+5^99).6 chia hết cho 6 nên 5+5^2 +5^3 +5^4...+5^99+5^100 chia hết cho 6.

Bình luận (0)
HC
Xem chi tiết
DL
9 tháng 7 2017 lúc 17:30

1.

Ta có:

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> 1/2*3/4*5/6*...*99/100 < 2/3*4/5*6/7*...*100/101

=> A < B

2.

\(A\cdot B=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(A\cdot B=\frac{\left[1\cdot3\cdot5\cdot7\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot9\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

3.

Vì A < B => A.A < A.B => A2 < 1/101 < 1/100

Mà A2 < 1/100 <=> A2 < \(\frac{1}{10}^2\)=> A < 1/10

Bình luận (0)
H24
Xem chi tiết
NH
29 tháng 10 2014 lúc 22:23

5^2+5^3+5^4+...+5^98+5^99=(5^2+5^3)+(5^4+5^5)+...+(5^98+5^99)=5^2.(1+5)+5^4.(1+5)+...+5^98.(1+5)=5^2.6+5^4.6+...+5^98.6=6.(5^2+5^4+...+5^98)=5^2+5^4+...+5^98 chia hết cho 6

Bình luận (0)
BH
Xem chi tiết
H24
18 tháng 12 2018 lúc 12:33

A = 4 + 42 + 43 + 44 + ... + 499 + 4100

A = ( 4 + 42 ) + ( 43 + 44 ) + ... + (499 + 4100)

A = ( 4 + 4) + 43(4 + 42 ) + .... + 499(4 + 42)

A = 20 + 43.20 + .... + 499.20

A = 20 ( 1 + 43 + .... + 499 )

A = 4.5.(1 + 43 + ... + 499 ) ⋮ 5 ( đpcm )

Bình luận (0)
H24
18 tháng 12 2018 lúc 12:33

\(A=4+4^2+4^3+4^4+...+4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=4\left(4+1\right)+4^3\left(4+1\right)+...+4^{99}\left(4+1\right)\)

\(=5\left(4+4^3+...+4^{99}\right)\Rightarrow A⋮5\)

Bình luận (0)
PN
Xem chi tiết
NT
30 tháng 8 2020 lúc 12:51

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

Bình luận (0)
PN
30 tháng 8 2020 lúc 12:00
https://i.imgur.com/VAewh4D.jpg
Bình luận (0)
PN
31 tháng 8 2020 lúc 11:56

Giúp mik vs ạ.Mik đag cần

Bình luận (0)
NH
Xem chi tiết
H24
15 tháng 4 2017 lúc 20:44

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

Bình luận (0)
GB
Xem chi tiết