Những câu hỏi liên quan
LA
Xem chi tiết
VH
26 tháng 8 2017 lúc 13:14

b = 3 vì mẫu số của hiệu là 15 = 5 x b = 5 x 3 nên a = 4

4/5 - 2/3 = 2/15

Bình luận (0)
LP
26 tháng 8 2017 lúc 13:21

\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)

\(\Rightarrow\frac{a.b}{5.b}-\frac{2.5}{b.5}=\frac{2}{15}\)

Tìm b: Vì kết quả có mẫu là \(15\Rightarrow5.b=b.5=15\Rightarrow b=15:5=3\) 

Tìm a: \(ab-2.5=2\)thay \(b=3\)ta có: \(a.3-2.5=2\)

                                                                             \(a.3-10=2\)

                                                                             \(a="2+10":3=4\)

Vậy : \(a=3;b=4\)

Bình luận (0)
KC
Xem chi tiết
WH
8 tháng 4 2018 lúc 20:22

\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)

\(\Leftrightarrow\frac{2}{b}=\frac{a}{5}-\frac{2}{15}\)

\(\Leftrightarrow\frac{2}{b}=\frac{3a-2}{15}\)

\(\Leftrightarrow30=b\left(3a-2\right)\)

Vì \(a,b\inℕ;b\ne0\)

\(\Rightarrow b;3a-2\inℕ\)

\(\Rightarrow b;3a-2\inƯ\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)

3a-2123561530
a1\(\frac{4}{3}\)\(\frac{5}{3}\)\(\frac{7}{3}\)\(\frac{8}{3}\)\(\frac{17}{3}\)\(\frac{32}{3}\)
b30//////
Đối chiếuChọnLoạiLoạiLoạiLoạiLoạiLoại

Vậy (a;b)\(\in\left\{\left(1;30\right)\right\}\)

Lưu ý: Cái phần tính chưa chắc đúng đâu nhé!

Bình luận (0)
NV
18 tháng 5 2020 lúc 13:10

nếu mày muốn học thì tự làm đi

Bình luận (0)
 Khách vãng lai đã xóa
DR
Xem chi tiết
DH
23 tháng 1 2017 lúc 21:08

a=4,b=3

m=3,n=2

Bình luận (0)
KB
Xem chi tiết
JP
Xem chi tiết
H24
17 tháng 12 2018 lúc 12:16

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}=\frac{z}{c}+\frac{x}{a}\)

\(\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{z}{c}\\\frac{z}{c}+\frac{x}{a}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}+\frac{y}{b}=\frac{z}{c}+\frac{x}{a}\Rightarrow\frac{y}{b}=\frac{z}{c}\end{cases}}\Rightarrow\frac{x}{a}=\frac{z}{c}=\frac{y}{b}.\text{đăt}k=\frac{x}{a}=\frac{z}{c}=\frac{y}{b}\Rightarrow x=ak,z=ck,y=bk\)

ta có: \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{k^2.\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)}=k^2\Rightarrow k^2=2k\Rightarrow k^2-2k=0\Rightarrow k.\left(k-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}\text{mà a,b,c và x,y,z khác 0. }\Rightarrow k=2\Rightarrow x=2a,y=2b,z=2c}\)

p/s: bài nì khó chơi vc =.=" sai sót bỏ qua ^^'

Bình luận (0)

tại sao k^2 lại bằng 2k

Bình luận (0)
 Khách vãng lai đã xóa

Vì x, y, z khác 0

=> xy khác 0 ; yz khác 0  ;  zx khác 0

Theo bài ra ta thấy : đổi chỗ của tử số và mẫu số thì đẳng thức vẫn xảy ra nên ta có:

ay+bx/xy=bz+cy/yz=cx+az/zx=a^2+b^2+c^2/x^2+y^2+z^2                                        (3)

=>a/x    +    b/y   =    b/y     +    c/z    =       c/z     +    a/x

=>  a/x  =  b/y  =c/z

Đặt   a/x  =   b/y   =    c/z  =  k ta suy ra

x=ak; y=bk, z=ck

Ta có : 

ay+bx/xy =  a.bk+b.ak/ak.bk  =   2.abk/abk.k =  2/k                                       (1)

Lại có : a^2+b^2+c^2/x^2+y^2+z^2

          =  a^2+b^2+c^2/k^2 ( a^2 +b^2 +c^2 )

         =1/k^2                                                                                                    (2)

(1)(2)(3) => 2/k = 1/k^2

             =>k^2/k=1/2

             =>k=1/2

Với k=1/2  =>x=  1/2 .a ; y  = 1/2  b  ;  z= 1/2 .c

Vậy với mọi x, y, z thỏa mãn điều kiện trên thì mọi kết quả đều đúng.

Hãy bày tỏ cảm xúc và bài làm của mình nha.Trân thành cảm ơn.

Bình luận (1)
 Khách vãng lai đã xóa
PA
Xem chi tiết
HN
11 tháng 8 2016 lúc 19:36

Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)

Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)

Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)

\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)

b) Áp dụng bđt Cauchy : 

\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)

\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)

\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)

\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\) 

Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)

 

Bình luận (2)
HP
Xem chi tiết
TM
Xem chi tiết
GT
3 tháng 3 2016 lúc 11:21

  từ giả thiết=> 2/b=a/5-2/15=(3a-2)/15 
=>b/2=15/(3a-2) (nghịch đảo hai vế) 
=>b=30/(3a-2) 
để b là số tự nhiên thì: 
a=1 =>b=30 => tích ab=30 
a=4 =>b=3 => tích ab=12 
KL: tích ab lớn nhất =30

Bình luận (0)
PA
Xem chi tiết
KS
30 tháng 3 2016 lúc 6:15

a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)

b/3> hoặc = b/5 ( xảy randaaus bằng với a=0

Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0

Bình luận (0)
VN
12 tháng 2 2017 lúc 16:22

tìm các số tự nhiên a,b,c sao cho a^2 <=b;b^2<=c;c^2<=a

Bình luận (0)
NK
28 tháng 10 2017 lúc 21:04

very easy

Bình luận (0)