ChoE=1/2mũ2 + 1/3mũ2 +......+1/100mũ2 . CMR E < 3/4
1/2mũ2+1/3mũ2+...+1/100mũ2
C/m nó nhỏ hơn 3/4 hả bạn ?
Có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)(ĐPCM)
C/M : A<1/2
A= 1/2mũ2+1/4mũ2+........+1/100mũ2
A=1/4(1/1+1/2^2+...+1/50^2)
=>A=1/4+1/4*(1/2^2+...+1/50^2)
=>A<1/4+1/4*(1-1/2+1/2-1/3+...+1/49-1/50)
=>A<1/4+1/4*49/50=99/200<1/2
1 1 1 1
---- + ------- + -------- + ........ ------ giải dùm mình nha,mk cảm ơn nhiều :>>
2mũ2 3mũ2 4mũ2 9mũ2
yêu cầu đề bài là gì đây ạ?? Tính hay là CM??
s4=3+3mũ2+3mũ3+...+3mũ20
s5+1+2+2mũ2+2mũ3+...+2mũ99
cho A=1/2mũ2 +1/3mũ2+....+1/2020mũ2 so sánh A với 1
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
A=1*2mũ2 + 2*3mũ2+.........+2017*2018mũ2
chứng minh rằng với mọi người số tự nhiên khác 0 ta luôn có :
1mũ2 + 2mũ2 + 3mũ2 +... nmũ2 = n .( n + 1 ). ( 2n + 1) /6
a) 2mũ1 nhân 5mũ2 nhân 17
b) 2mũ2 + 2mũ3 + 2mũ4
c) 2mũ5 nhân 3 + 2mũ4 : 8 + 50 : 5mũ2
d) 11mũ2 - 10mũ2 - 3mũ2
e) 1mũ3 + 2mũ3 + 3mũ3 + 4mũ3 + 5mũ3
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225