Những câu hỏi liên quan
TV
Xem chi tiết
ND
Xem chi tiết
TH
Xem chi tiết
NC
23 tháng 10 2019 lúc 10:50

Với n thuộc Z

Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)

=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)

Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)

+) Với n + 3 = 1 => n =-2  => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.

+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại

+) Với 2n -1 = 1 => n =1 => |A | = 4 loại

+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.

Vậy n=-2 hoặc n =0.

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NV
Xem chi tiết
TT
10 tháng 8 2017 lúc 9:24

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

Bình luận (0)
CH
28 tháng 3 2018 lúc 13:59

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 11 2019 lúc 15:21

Bình luận (0)
LK
Xem chi tiết
NT
21 tháng 1 2024 lúc 21:37

a: Để A là phân số thì \(2n+4\ne0\)

=>\(2n\ne-4\)

=>\(n\ne-2\)

b: Thay n=0 vào A, ta được:

\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)

Thay n=-1 vào A, ta được:

\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)

Thay n=2 vào A, ta được:

\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)

c: Để A  nguyên thì \(3n-2⋮2n+4\)

=>\(6n-4⋮2n+4\)

=>\(6n+12-16⋮2n+4\)

=>\(-16⋮2n+4\)

=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)

Bình luận (0)
H24
Xem chi tiết
JP
Xem chi tiết