tìm n để 2n-1/2n+3 là số nguyên tố
tìm n thuộc N để 2n - 1 và 2n +1 là số nguyên tố
Câu 3
a) Tìm số nguyên n để A=\(2n^2\)\(+n-6\) chia hết cho 2n+1
b) Cho p là số nguyên tố lớn hơn 3.Chứng minh rằng : \(p^2-1⋮24\)
Lời giải:
a.
$2n^2+n-6=n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1$ là ước của $6$
Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
b.
Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$
Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$
Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$
Suy ra $p^2-1$ luôn chia hết cho $3$ (*)
Mặt khác:
$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$
$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)
Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.
là ước của
Mà lẻ nên
b.
Vì là số nguyên tố lớn hơn 3 nên hoặc
Với thì
Với thì
Suy ra luôn chia hết cho (*)
Mặt khác:
lẻ nên . Khi đó:
tìm x và y bt:X+10/5=6/Y+1
tìm số nguyên n để 2n+3/n là một số nguyên
tìm số nguyên tố n để n+3 là số nguyên tố
Cho số tự nhiên n.Hãy giải thích tại sao 2n+3/2n+5 tối giản với các giá trị của n
b: Để A nguyên thì 2n+3 chia hết cho n
=>3 chia hết cho n
=>n thuộc {1;-1;3;-3}
c: Th1: n=2
=>n+3=5(nhận)
TH2: n=2k+1
=>n+3=2k+4=2(k+2)
=>Loại
d: Gọi d=ƯCLN(2n+3;2n+5)
=>2n+5-2n-3 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>PSTG
Tìm sỗ tự nhiên n để A=32n-22n+1-6n là số nguyên tố
Tìm số nguyên tố P để 2p + P2 là số nguyên tố
GIÚP MÌNH VỚI!!!
Tìm n thuộc N để 2n+1 , 3n+1 là các SCP còn 2n+9 là số nguyên tố
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
tìm n để A=n3-2n2+2n-4 là số nguyên tố
\(A=n^3-2n^2+2n-4\)
\(=n^2\left(n-2\right)+2\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+2\right)\)
Để A là sô nguyên tố thì: \(\orbr{\begin{cases}n-2=1\\n^2+2=1\end{cases}}\)
mà \(n^2+2\ge2\)\(\forall n\)
nên \(n-2=1\)\(\Leftrightarrow\)\(n=3\)
Thử lại: \(n=3\)thì \(A=11\)là số nguyên tố
Vậy n = 3
Tìm số nguyên dương n để n^3+2n^2-3 là số nguyên tố.
tìm số nguyên dương n để n^3+2n^2-3 là số nguyên tố