Những câu hỏi liên quan
NH
Xem chi tiết
LH
Xem chi tiết
HN
Xem chi tiết
EC
7 tháng 8 2016 lúc 12:40

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> xy; zk; ... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

Bình luận (0)
LA
7 tháng 8 2016 lúc 11:46

                           khó phết                                       hjhj

Bình luận (0)
SG
7 tháng 8 2016 lúc 11:47

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> xy; zk; ... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

Bình luận (0)
CN
Xem chi tiết
CN
Xem chi tiết
DH
13 tháng 7 2017 lúc 14:46

 + ta có số nguyên tố có số lượng ước là 2,đó 1 số chẵn,vậy số đó không thể là số nguyên tố=> số đó là hợp sỗ 
nên ta có thể đặt n = p1^k1.p2^k2...pr^kr (phân tích ra thừa số nguyên tố) 
số ước của n là (k1 + 1)(k2 + 1)..(kr + 1) 
theo đề bài thì (k1 + 1)(k2 + 1)..(kr + 1) là số lẽ 
=> k1,k2,..kr tất cả phải hoàn toàn là số chẵn,bởi vì chỉ cần một ki lẻ thì toàn bộ tích đó là số lẽ 
nghĩa là k1 = 2k1',k2 = 2k2',...,kr = 2kr' 
suy ra n = [p1^k1'.p2^k2'...prkr']^2 là 1 số chính phương

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 5 2018 lúc 7:15

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 10 2017 lúc 8:32

Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : M = a x b y c z . . .  Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó  M = a 2 x ' b 2 y ' c 2 z ' . . . = ( a x ' b y ' c z ' ) 2 . Điều này chính tỏ M là một số chính phương.

Bình luận (0)
PA
7 tháng 1 2021 lúc 18:10

bạn chép trên qanda à???????????

Bình luận (0)
 Khách vãng lai đã xóa
PD
15 tháng 5 2024 lúc 21:48

qua 4 năm r mà cậu vẫn hỏi, đây 7 năm nè :))

Bình luận (0)
GR
Xem chi tiết
FB
10 tháng 11 2019 lúc 20:03

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a = \(x^y\).\(^{z^k}\)... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> \(\frac{x}{y}\); \(\frac{z}{k}\); ... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
FB
10 tháng 11 2019 lúc 20:05

CÁI NÀY ĐÚNG NÈ NHẤT NÈ NHA

Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a

+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài

+ Nếu a > 1 => a =\(x^y\)..\(z^k\). (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)

=> số ước của a là: (y + 1).(k + 1)... là số lẻ

=> y + 1 là số lẻ; k + 1 là số lẻ; ...

=> y chẵn; k chẵn; ...

=> \(x^y\); \(z^k\)... là số chính phương

Mà số chính phương x số chính phương = số chính phương => a là số chính phương

Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
DP
7 tháng 12 2019 lúc 23:05

Ta có: các số bình thường (không phải số chính phương) sẽ có ít nhất 2 ước

Các ước sẽ nhân với nhau để tạo ra số đó, mà mỗi lần nhân thì phải nhân 2 số khác nhau với nhau, ví dụ: 14 = 7 . 2 = 1 . 14

Với số chính phương, sẽ có 2 số giống nhau nhân với nhau mà khi viết thì chỉ cần viết 1 lần

=> các số chính phương sẽ có số ước lẻ

Tớ xin lỗi vì cách diễn đạt bị lủng củng .Ú-Ù.

Bình luận (0)
 Khách vãng lai đã xóa
GL
Xem chi tiết