PB

Chứng minh rằng một số tự nhiên khác 0, có số lượng các ước là một số lẻ thì số tự nhiên đó là một số chính phương

CT
22 tháng 10 2017 lúc 8:32

Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : M = a x b y c z . . .  Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó  M = a 2 x ' b 2 y ' c 2 z ' . . . = ( a x ' b y ' c z ' ) 2 . Điều này chính tỏ M là một số chính phương.

Bình luận (0)
PA
7 tháng 1 2021 lúc 18:10

bạn chép trên qanda à???????????

Bình luận (0)
 Khách vãng lai đã xóa
PD
15 tháng 5 2024 lúc 21:48

qua 4 năm r mà cậu vẫn hỏi, đây 7 năm nè :))

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
GL
Xem chi tiết
PS
Xem chi tiết
HN
Xem chi tiết
PT
Xem chi tiết
TN
Xem chi tiết
CN
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết