Những câu hỏi liên quan
TT
Xem chi tiết
H24
Xem chi tiết
PT
23 tháng 1 2017 lúc 17:56

an = 1 + 2 + 3 + ... + n =\(\frac{n\left(n+1\right)}{2}\)

an + 1 = 1 + 2 + 3 + ... + n + (n + 1) =\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)

an + an + 1 =\(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\left(n+1\right)^2\)là số chính phương (đpcm)

Bình luận (0)
TN
Xem chi tiết
NT
10 tháng 3 2020 lúc 17:39

a) Ta có: \(a=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(n^2+3n+1=t\)(1)

Khi đó: \(a=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(\Rightarrow\) a là số chính phương

b) Để a=121 thì \(t^2=121\)\(\Rightarrow t=\pm11\)

+ Với t=11 thì (1) \(\Leftrightarrow n^2+3n+1=11\Leftrightarrow n^2+3n-10=0\)

\(\Leftrightarrow\left(n-2\right)\left(n+5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=-5\end{cases}}\)

+ Với n=-11 thì (1)\(\Leftrightarrow n^2+3n+1=-11\Leftrightarrow n^2+3n+12=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2+\frac{39}{4}=0\) ( vô lý)

Do đó, pt vo nghiệm

Vậy để a=121 thì n =2 hoặc n=-5

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
PG
Xem chi tiết
NT
Xem chi tiết
H24
12 tháng 1 2016 lúc 22:05

Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Bình luận (0)
HV
13 tháng 1 2016 lúc 17:13

Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Bình luận (0)
CV
Xem chi tiết
CV
Xem chi tiết
PH
Xem chi tiết
XO
22 tháng 8 2020 lúc 21:39

a) x = [((n + 1)(n + 4)].[(n + 2)(n + 3)] + 1

= (n2 + 5n + 4)(n2 + 5n + 6) + 1 

= (n2 + 5n + 5 - 1)(n2 + 5n + 5 + 1) + 1

= (n2 + 5n + 5)2 - 12 + 1 = (n2 + 5n + 5)2 (đpcm)

b) y = [n(n + 9)].[(n + 3)(n + 6)] + 81 

= (n2 + 9n).(n2 + 9n + 18) + 81

= (n2 + 9n + 9 - 9)(n2 + 9n + 9 + 9) + 81

= (n2 + 9n + 9)2 - 92 + 81 = (n2 + 9n + 9)2 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
CQ
22 tháng 8 2020 lúc 21:48

a) \(x=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)    

\(=\left(n+1\right)\left(n+4\right)\left(n+2\right)\left(n+3\right)+1\)  

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)   ( 1 ) 

Đặt \(t=n^2+5n\)     

\(\left(1\right)\Leftrightarrow=\left(t+4\right)\left(t+6\right)+1\)   

\(=t^2+10+24+1\)    

\(=t^2+10t+25\)          

\(=\left(t+5\right)^2\)      

Vậy x là số chính phương 

b)  \(y=n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)          

\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)    

\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)    ( 1 ) 

Đặt \(a=n^2+9n\)   

\(\Leftrightarrow\left(1\right)=a\left(a+18\right)+81\)       

\(=a^2+18a+81\)         

\(=\left(a+9\right)^2\)               

Vậy y là số chính phương 

Bình luận (0)
 Khách vãng lai đã xóa
TA
22 tháng 8 2020 lúc 21:49

a) Ta có: \(x=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

        \(\Leftrightarrow x=\left[\left(n+1\right)\left(n+4\right)\right].\left[\left(n+2\right)\left(n+3\right)\right]+1\)

        \(\Leftrightarrow x=\left(n^2+5n+4\right).\left(n^2+5n+6\right)+1\)

   Đặt \(a=n^2+5n+4\)\(\Rightarrow\)\(a+2=n^2+5n+6\)

   Ta lại có: \(x=a.\left(a+2\right)+1\)

           \(\Leftrightarrow x=a^2+2a+1\)

           \(\Leftrightarrow x=\left(a+1\right)^2\)

           \(\Leftrightarrow x=\left(n^2+5n+5\right)^2\)

Vậy x là số chính phương

b) Ta có: \(y=n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)

        \(\Leftrightarrow y=\left[n\left(n+9\right)\right]\left[\left(n+3\right)\left(n+6\right)\right]+81\)

        \(\Leftrightarrow y=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)

    Đặt \(b=n^2+9n\)\(\Rightarrow\)\(b+18=n^2+9n+18\)

    Ta có: \(y=b.\left(b+18\right)+81\)

        \(\Leftrightarrow y=b^2+18b+81\)

        \(\Leftrightarrow y=\left(b+9\right)^2\)

        \(\Leftrightarrow y=\left(n^2+9n+9\right)^2\)

Vậy y là số chính phương

Chúc bn hok tốt

Bình luận (0)
 Khách vãng lai đã xóa