\(x-\frac{6}{1.3.5}-\frac{6}{3.5.7}-...-\frac{6}{99.101.103}=0\)
Tính tổng:
\(K=\frac{2}{1.3.5}+\frac{2}{3.5.7}+...+\frac{2}{99.101.103}\)
Ta có :
2K = \(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...............+\frac{4}{99.101.103}=\)\(\frac{1}{1.3}-\frac{1}{3.5}+\)\(+\frac{1}{3.5}-\frac{1}{5.7}+..................+\frac{1}{99.101}-\frac{1}{101.103}=\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+................+\frac{1}{101}-\frac{1}{103}=1-\frac{1}{103}=\frac{102}{103}\)
=> K= \(\frac{102}{103}:2=\frac{51}{103}\)
2K=2.($\frac{2}{1.3.5}$+$\frac{2}{3.5.7}$+...+$\frac{2}{99.101.103}$)
2K=$\frac{4}{1.3.5}$+$\frac{4}{3.5.7}$+...+$\frac{4}{99.101.103}$
2K=$\frac{1}{1.3}$-$\frac{1}{3.5}$+$\frac{1}{3.5}-$\frac{1}{5.7}$+...+$\frac{1}{99.101}$-$\frac{1}{101.103}$
2K=$\frac{1}{1.3}$-$\frac{1}{101.103}$
2K=$\frac{1}{3}$-$\frac{1}{10403}$
2K=$\frac{10400}{31209}$
K=$\frac{5200}{31209}$
Vậy K=$\frac{5200}{31209}$
tính
B=1.3.5+3.5.7+5.7.9+7.9.11+...+99.101.103
Chứng minh rằng :
B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+...+\frac{36}{25.27.29}<3\)
C= \(\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{\left(2n\right)^2}<\frac{1}{4}\left(n\in N;n\ge2\right)\)
Giúp mik nhé
\(\begin{equation} x = a_0 + \cfrac{1}{740_1 + \cfrac{1}{897654_2 + \cfrac{1}{672_3 + \cfrac{1}{100_4} } } } \end{equation}\)
Tính tổng :\(\frac{6}{1.3.5}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\)
Tính
1/1.3.5 + 1/3.5.7 + 1/5.7.9 + ... + 1/99.101.103
CÁC BẠN GIÚP MIK VỚI
1/1.3.5 + 1/3.5.7 + 1/5.7.9 +.....+ 1/99.101.103
= 1/4. [4/1.3.5 + 4/3.5.7 + 4/ 5.7.9 +....+ 4/99.101.103]
=1/4. [1/1.3 - 1/3.5 + 1/3.5 - 1/5.7 +....+ 1/99.101 - 1/101.103]
= 1/4. [1/1.3 - 1/101.103]
=1/4. 10406/31209
= 5230/62418
\(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+....+\frac{1}{99\cdot101\cdot103}\)
\(2A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5-7}+....+\frac{1}{99\cdot101}-\frac{1}{101\cdot103}\)
\(2A=\frac{1}{1\cdot3}-\frac{1}{101\cdot103}\)
Tính nốt
Tính: \(E=\frac{3}{1.3.5}+\frac{3}{3.5.7}+..+\frac{3}{13.15.17}\)
\(2E=\frac{6}{1.3.5}+\frac{6}{3.5.7}+...+\frac{3}{13.15.17}\)
\(2E=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{13.15}-\frac{1}{15.17}\)
\(2E=\frac{1}{1.3}-\frac{1}{15.17}\)
\(2E=\frac{1}{15}-\frac{1}{255}\)
\(\Rightarrow2E=\frac{16}{255}\)
\(\Rightarrow E=\frac{8}{255}\)
Tính tổng : \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{1997.1999.2001}\)
Tính tổng \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{1997.1999.2001}\)
\(A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{1997.1999}-\frac{1}{1999.2001}\)
\(=\frac{1}{1.3}-\frac{1}{1999.2001}\)
Bạn tính kết quả nhé
\(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}\)
=4/15+4/105+4/315
=>20/36
tích đúng nha bạn