Những câu hỏi liên quan
MN
Xem chi tiết
H24
4 tháng 1 2016 lúc 18:20

Áp dụng ...............ta có :

x/z+y+1=y/x+z+1=z/x+y-2=1/2

+,x/z+y+1=1/2=>2x=z+y+1

                      =>2x-1=z+y

lại có x+y+z=1/2(1)=>x+2x-1=1/2

                             =>3x=1/2+1=3/2

                             =>x=3/2 /3=1/2

+,y/x+z+1=1/2=>2y=x+z+1

                      =>2y-1=x+z

 Từ 1    =>2y-1+y=x+y+z

            =>3y=1/2+1=3/2

           =>y=3/2 /2 = 1/2

Thãy=1/2;y=1/2 vào 1 ta có :

1/2+1/2+z=1/2

z=1/2-1/2-1/2=-1/2

Bình luận (0)
MT
4 tháng 1 2016 lúc 18:08

vận dụng dãy tỉ số bằng nhau pp ăn cơm

Bình luận (0)
NQ
4 tháng 1 2016 lúc 18:10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+x+y-2}=\frac{x+y+z}{2x+2y+2z}=\frac{x+y+z}{2\left(x+y+z\right)}=A\)

TH1: A = 0 

< = > x = y = z = 0 

 

Bình luận (0)
H24
Xem chi tiết
NT
4 tháng 3 2020 lúc 14:46

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(=>\frac{y-x}{xy}=\frac{1}{xy}\)

\(=>xy^2-x^2y=xy\)

\(=>xy^2-x^2y-xy=0\)

\(=>x.\left(y^2-xy-y\right)=0\)

\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)

Ta thấy \(y^2-xy-y=0\)

\(=>y.\left(y-x-y\right)=0\)

\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)

Từ 1 và 2 => x = y = 0

Bình luận (0)
 Khách vãng lai đã xóa
KN
4 tháng 3 2020 lúc 14:47

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)

\(\Rightarrow y-x=1\)

Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
4 tháng 3 2020 lúc 14:47

Ta có\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(\Leftrightarrow\frac{y-x}{xy}=\frac{1}{xy}\)

\(\Leftrightarrow y-x=1\Rightarrow y=x+1\)

Vậy..................

Ko có giá trị cụ thể nha

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
PQ
2 tháng 2 2018 lúc 20:29

Ta có :

\(\frac{x+1}{3}=\frac{-1}{y-2}\)\(\Rightarrow\)\(\left(x+1\right)\left(y-2\right)=\left(-1\right).3\)

\(\left(x+1\right)\left(y-2\right)=-3\)

TRƯỜNG HỢP 1 :

\(\hept{\begin{cases}x+1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TRƯỜNG HỢP 2 :

\(\hept{\begin{cases}x+1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

TRƯỜNG HỢP 3 :

\(\hept{\begin{cases}x+1=3\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

TRƯỜNG HỢP 4 :

\(\hept{\begin{cases}x+1=-3\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}}\)

Vậy ...

Bình luận (0)
NH
Xem chi tiết
PN
21 tháng 8 2021 lúc 21:40

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
VN
10 tháng 2 2022 lúc 22:43

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

Bình luận (0)
 Khách vãng lai đã xóa
DH
11 tháng 2 2022 lúc 8:15

TH1: \(x+y+z=0\)

Bài toán trở thành: 

\(\frac{x}{-x+1}=\frac{y}{-y+1}=\frac{z}{-z-2}=0\)

\(\Leftrightarrow x=y=z=0\).

TH2: \(x+y+z\ne0\):

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}=x+y+z\).

Ta có hệ: 

\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\2x=y+z+1\\2y=x+z+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
LC
24 tháng 10 2017 lúc 17:33

mk ko bt 123

Bình luận (0)
KT
Xem chi tiết
PT
27 tháng 1 2018 lúc 16:54

Lớp 8 chưa cần biết Svacxơ làm gì cả.

Bạn chứng minh cái này rồi áp dụng cũng được

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\) với \(m;n>0\)

Bình luận (0)
KT
28 tháng 1 2018 lúc 9:54

Mk hk bt CM \(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\). Chính vì vậy nên ms hỏi cách CM Svacxơ cho nhanh....

Giúp mk đk ko???

Bình luận (0)
CT
16 tháng 2 2020 lúc 14:16

bài này áp dụng công thức 

a^2/x+b^2/y+c^2/z>=(a+b+c)^2/x+y+z là đc mak

Bình luận (0)
 Khách vãng lai đã xóa
PL
Xem chi tiết
H24
Xem chi tiết
TH
1 tháng 2 2019 lúc 21:08

https://dethi.violet.vn/present/showprint/entry_id/11072330

bạn vào link trên sẽ có full đề và đáp án 

p/s: nhớ k cho mình nha <3

Bình luận (0)

\(\frac{x-2}{4}=-\frac{16}{2-x}\)

\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)

\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)

\(\Leftrightarrow\left(x-2\right)^2=8^2\)

\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)

Bình luận (0)
MW
Xem chi tiết