Chứng minh rằng:
5n-1 ⋮ 4 với mọi n\(\in N\)
chứng minh rằng:
(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2) +4 chia hết cho 5, với mọi n
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
Chứng minh rằng với mọi \(n\in N\); \(n\ge2\) ta có :
\(\dfrac{3}{9.14}+\dfrac{3}{14.19}+....................+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}< \dfrac{1}{15}\)
Đặt :
\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+......................+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(A.\dfrac{5}{3}=\dfrac{5}{9.14}+\dfrac{5}{14.19}+..................+\dfrac{5}{\left(5n-1\right)\left(5n+1\right)}\)
\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+..................+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)
\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{5n+4}\)
\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{3}{5}\)
\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+\text{4}}\right).\dfrac{3}{5}\)
\(A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)
\(A=\dfrac{1}{15}-\dfrac{1}{5.\left(5n+4\right)}\)
\(\Rightarrow A< \dfrac{1}{15}\)
\(\Rightarrowđpcm\)
Chúc bn học tốt!!!!!!!!!!
Chứng minh rằng với mọi n thuộc N;n>hoặc =2 ta có :
3/9.14 + 3/14.19 + 3/19.24 +...+3/(5n-1).(5n+4) < 1/15
Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)
kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)
=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)
chứng minh rằng với mọi n thuộc N, n lớn hơn hoặc bằng 2, ta có 3/9.14 + 3/14.19 + 3/19.24 +.......+ 3/(5n-1)(5n+4) < 1/15
Chứng minh rằng phân số: 4n+3/5n+4 tối giản với mọi n thuộc N*
\(\frac{4n+3}{5n+4}\)
Ta có d là ƯCLN(4n+3;5n+4)
=>4n+3:d
5n+4:d
=>20n+15:d
20n+16:d
=>1:d
=>\(\frac{4n+3}{5n+4}\)là phân số tối giản
(chú ý sau dấu => có hoăc móc nhé)
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
Chứng minh rằng với mọi \(n\in N\); \(n\ge2\) ta có :
\(\dfrac{3}{9.14}+\dfrac{3}{14.19}+\dfrac{3}{19.24}+..........+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}< \dfrac{1}{15}\)
Help me!!!!!!!!!!!!!!!!!!
thoi lay cai nich nguyen thanh hang dang len di
lay nich nay de do nhuc mat chu ji
help me!!!!!!!!!!!!!!!!!!!! lam ji
cac ban thay anh nen cua toi dep ko
chứng minh rằng:7n-1/4 và 5n+3/12 không đồng thời là số tự nhiên với mọi n thuộc N*
Ta có:
7n-1 chia hết cho 4
Suy ra:7n-1+8 chia hết cho 4
suy ra 7n+7 chia hết cho 4
suy ra 7.n+1 chia hết cho 4
suy ra n+1 chia hết cho 4(vì 4,7 nguyên tố cùng nhau)
suy ra n=4k+1
đối với 5n+3/12 bạn làm tương tự nha!!!!chúc học giỏi
Chứng minh rằng (5n + 2)2 – 4 chia hết cho 5 với mọi số nguyên n
Ta có:
(5n + 2)2 – 4
= (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.
Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ