Những câu hỏi liên quan
LQ
Xem chi tiết
BB
Xem chi tiết
H24
9 tháng 3 2021 lúc 20:08

undefined

Bình luận (0)
BB
Xem chi tiết
NL
22 tháng 12 2020 lúc 20:14

\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)

\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân

Bình luận (0)
CN
Xem chi tiết
CN
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
PL
Xem chi tiết
NB
26 tháng 3 2020 lúc 10:37

Ta có:

a<b+ca<b+c 
--> a+a<a+b+ca+a<a+b+c 
--> 2a<22a<2 
--> a<1a<1 

Tương tự ta có : b<1,c<1b<1,c<1 

Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0 
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0 
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0 
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc 

Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca 
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2 
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm

Bình luận (0)
 Khách vãng lai đã xóa