Cho a,b là các số nguyên .Chứng tỏ rằng :\(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)
a)Cho a, b là các số nguyên. CMR:\(\frac{2-2a}{6-8b}\)=\(\frac{3-3a}{9-12b}\).
b)Chứng tỏ phân số:\(\frac{n+3}{2n+5}\)là phân số tôi giản.
GIÚP MÌNH VỚI CÁC BẠN ƠI ! PLEASE !!!!
a. \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)
\(\Leftrightarrow\left(6-8b\right)\left(3-3a\right)=\left(2-2a\right)\left(9-12b\right)\)
\(\Leftrightarrow18-18a-24b+24ab=18-24b-18a+24ab\) ( đúng )
=> Đpcm
b. Gọi d là ƯCLN của n + 3 và 2n + 5
n + 3 chia hết cho d
2n + 5 chia hết cho d
\(\Rightarrow\left(n+3\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2\left(n+3\right)-2n-5⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)=> d = 1
=> Đpcm
a) Giả sử \(\frac{2-2a}{6-8b}=\frac{3-3a}{9-12b}\)là đúng
Ta cần chứng minh \(\frac{2-2a}{6-8b}-\frac{3-3a}{9-12b}=0\)
\(\Rightarrow\frac{2\left(1-a\right)}{2\left(3-4b\right)}-\frac{3\left(1-a\right)}{3\left(3-4b\right)}=0\)
\(\Rightarrow\frac{1-a}{3-4b}-\frac{1-a}{3-4b}=0\)( đúng )
Vậy ta có đpcm
b) Gọi d là ƯCLN( n + 3 ; 2n + 5 )
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+3;2n+5\right)=1\)
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản ( đpcm )
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
Cho a,b,c là các số thỏa \(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3=\frac{1}{8}\)
Chứng minh rằng: \(\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)
Đặt A=\(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3\)
\(=\left(\frac{-3a+2b+c}{6}\right)^3+\left(\frac{2a+b-3c}{6}\right)^3+\left(\frac{a-3b+2c}{6}\right)^3\)
\(=\left(\frac{-3a+2b+c+2a+b-3c+a-3b+2c}{6}\right)^3-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
(Hằng đẳng thức)
\(=0-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
\(\Rightarrow\frac{\left(a-3b+2c\right)\left(-3a+2b+c\right)\left(2a+b-3c\right)}{72}=\frac{1}{8}\)
\(\Leftrightarrow\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)(đpcm).
Toán 6: Chứng minh rằng
a,-6b/9b=-4a/6b. b, 2-2a/6-8b=3-3a/9-12b
c, 7x-21/14x-42=1/2. d, 9x-18/18y-54=x-2/2y-6
e, xy-x2/y2--xy=x/y
x(y+3)-y=-2
2x+xy -3y =18
(x^2 -5 ) . (x^2-25 ) là số nguyên âm
/7/+3^2 - (-2)^3
-7.18.9+43.63+(-21).375
15 -(-15+34)
chứng tỏ rằng 3a +12b chia hết cho 3.với mọi số nguyên a,b
chứng tỏ biết 5a+5b chia hết cho 3.chứng tỏ rằng với mọi số nguyên a,b ta có 5a+2b chia hết cho -3
giải giúp mik bài toán nay với
1.Chứng minh
a)-6a/9b=-4a/6b b)2-2a/6-8b=3-3a/9-12b
Bài 1: Cho A=/x+5/+2-x
a) Viết biểu thức A dưới dạng ko có dấu giá trị tuyệt đối
b) tìm giá trị nhỏ nhất của A
Bài 2: Chứng Minh rằng:
\(\frac{1}{2}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
b) Tìm số nguyên a để :
\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)là số nguyên
Cho 3 số dương a;b;c thỏa mãn \(a+2b+3c\ge10\). Chứng minh rằng \(a+b+c+\frac{3a}{4}+\frac{9}{8b}+\frac{1}{c}\ge\frac{13}{2}\)
Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy
chứng tỏ rằng với mọi số tự nhiên a và b thì
a, 2a + 6b chia hết cho 2
b, 3a + 12b chia hết cho 3
c, 15a + 75b chia hết cho 5
d, 18a + 81b chia hết cho 9
e, 12a +18b + 9 chia hết cho 3 nhưng không chia hết cho 2
giúp mình vs