Cho R =x²+x+1/x a) so sánh R với 3 b) Tìm giá trị nhỏ nhất của R c) tìm x thuộc Z để R >4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
R=\(1:\left(\frac{x^2+2}{x^3-1} +\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
a, rút gọn R
b, so sánh R với 3
c, GTNN của R
d, tìm x thuộc Z để R >4
ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)
a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)
\(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)
\(=\frac{x^2+x+1}{x}\)
b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)
Vậy R > 3
1.cho biểu thức R=\(\left(1-\frac{4\sqrt{x}}{x-1}-\frac{1}{1-\sqrt{x}}\right):\frac{x+2\sqrt{x}}{x-1}\)
a)rút gọn biểu thức
b)tính giá trị của R khi x=4-2\(\sqrt{3}\)
c)tìm x khi R=1/2
d)tìm x thuộc Z để R thuộc Z
e)tìm x để R>0
Câu này bạn làm tương tự như câu trên nha
tick cho mình nha
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x-3}}-\frac{3\left(\sqrt{x+3}\right)}{x-9}\right):\left(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\right).\)
a)rút gọn R
b)tìm các giá trị của x để R < -1
c)tìm các giá trị của x để giá trị của biểu thức R nhỏ nhất. Tìm giá trị nhỏ nhất đó.
aI CỨU ĐI...MÌNH THÍNH GẦN RA RỒI NHƯNG KẾT QUẢ SAI, AI GIÚP MÌNH MÌNH SẼ TÍCH <3
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
Cho \(R=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
a,Rút gọn R
b,So sánh R với 3
c,Tìm GTNN của R
d,Tìm \(x\in Z\) để R>4
Cho x+y+z=3 vs x,y,z thuộc R. Tìm giá trị nhỏ nhất của P=x^2+y^2+z^2
a) Cho x,y,z thuộc R. CMR: (x+y+z)²≤3(x²+y²+z²) b) cho a+b+c=1 và a,b,c≥-¼ Tìm giá trị lớn nhất của biểu thức A=√(4a+1) + √(4b+1) + √(4c+1)
a) (x + y + z)2 \(\le3\left(x^2+y^2+z^2\right)\)(1)
<=> \(x^2+y^2+z^2+2xy+2yz+2zx\le3x^2+3y^2+3z^2\)
<=> \(2x^2+2y^2+2z^2-2xy-2xz-2yz\ge0\)
<=> (x - y)2 + (y - z)2 + (z - x)2 \(\ge0\) (đúng)
=> (1) đúng "=" khi x = y = z
b) \(A=1\sqrt{4a+1}+1.\sqrt{4b+1}+1.\sqrt{4c+1}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(4a+1+4b+1+4c+1\right)}\)
\(=\sqrt{3.\left[4\left(a+b+c\right)+3\right]}=\sqrt{21}\left(\text{vì }a+b+c=1\right)\)
"=" xảy ra <=> \(\dfrac{1}{\sqrt{4a+1}}=\dfrac{1}{\sqrt{4b+1}}=\dfrac{1}{\sqrt{4c+1}};a+b+c=1\)
<=> a = b = c = 1/3
cho biểu thức
p=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a) rÚT GỌN p
B) TÌM GIÁ TRỊ CỦA X ĐỂ p=-1
C) TÌM X THUỘC Z ĐỂ P THUỘC Z
D) SO SÁNH P VỚI 1
E) TÌM GIÁ TRỊ NHỎ NHẤT CỦA p
a) ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Leftrightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)
\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(minP=-1\Leftrightarrow x=0\)
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)
\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)
Dấu \("="\Leftrightarrow x=0\)
Bài 3
tìm x thuộc R để biểu thức A = (x-4)^2+3 để đạt được giá trị nhỏ nhất.
x = 4 đó bạn
giải rõ ra đi bạn
sssssssssssssssssss
ssssssssssssss
ssssssssssss
Tìm x thuộc Z để : a, C=6/(/x/-3) đạt giá trị nhỏ nhất
b, B= 27-2x/12-x đạt giá trị lớn nhất
Mk đag cần gấp lắm, chiều hôm nay là hạn nộp bài r. Bạn nào làm đúng mk tick cho nha. Các bạn giúp mk với