Những câu hỏi liên quan
DT
Xem chi tiết
DQ
Xem chi tiết
PB
Xem chi tiết
CT
15 tháng 9 2019 lúc 2:22

Vì:  a + 1 1 + b 2 = a + 1 − b 2 ( a + 1 ) 1 + b 2 ;   1 + b 2 ≥ 2 b   n ê n   a + 1 1 + b 2 ≥ a + 1 − b 2 ( a + 1 ) 2 b = a + 1 − a b + b 2

Tương tự:  b + 1 1 + c 2 ≥ b + 1 − b c + c 2 ;   c + 1 1 + a 2 ≥ c + 1 − c a + a 2 ⇒ M ≥ a + b + c + 3 − ( a + b + c ) + ( a b + b c + c a ) 2 = 3 + 3 − ( a b + b c + c a ) 2

Chứng minh được:  3 ( a b + b c + c a ) ≤ ( a + b + c ) 2 = 9 a c ⇒ 3 − ( a b + b c + c a ) 2 ≥ 0 ⇒ M ≥ 3

Dấu “=” xảy ra khi a = b = c = 1. Giá trị nhỏ nhất của M bằng 3.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2018 lúc 9:43

a, Do 18 a b  chia hết cho 5 và 8 nên b = 0, suy ra số cần tìm có dạng  18 a 0

Theo dấu hiệu nhận biết chia hết cho 8 thì ta có a 0  chia hết cho 8

=>  a 0  cần tìm là 40 hoặc 80

Số cần tìm là 1840 hoặc 1880.

b, 34452; 34056

c, 76923

d, 12221

Bình luận (0)
TA
Xem chi tiết
NM
22 tháng 10 2021 lúc 8:36

a/ Ta có

\(6^3=216;6^4=1296\)

\(\Rightarrow n\le3\Rightarrow n=\left\{0;1;2;3\right\}\) 

Thay lần lượt các giá trị của n vào \(18mn+6^n=222\) ta tìm được n=1 và m=12 là giá trị thoả mãn biểu thức

b/

\(\overline{abcd}=100.\overline{ab}+\overline{cd}=12.\overline{ab}+\overline{cd}+88.\overline{ab}\)

Ta có \(\left(12.\overline{ab}+\overline{cd}\right)⋮11;88.\overline{ab}⋮11\Rightarrow\overline{abcd}⋮11\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
BH
Xem chi tiết
AH
29 tháng 6 2021 lúc 17:30

Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)

Ta có:

\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)

\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.

Ta có đpcm.

 

Bình luận (0)
AH
29 tháng 6 2021 lúc 17:34

Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)

Ta có:

\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)

\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)

\(=(3t+3)^2\) là scp.

Ta có đpcm.

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2019 lúc 7:50

Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0  thì

12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0  

Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1  

Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0  thỏa mãn a b ≤ 1  

Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0  

a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0  

 

Do 0 < a b ≤ 1  nên BĐT này đúng

Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0  thỏa mãn  a b ≤ 1

Đặt t = a b , 0 < t ≤ t  ta được 2 1 + t + 2015 t 2 ≤ 2016  

2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0  

BĐT này đúng  ∀ t : 0 < t ≤ 1  

Vậy  1 1 + a + 1 1 + b + 2015 a b ≤ 2016.  Đẳng thức xảy ra a = b = 1

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 10 2021 lúc 23:03

Chọn C

Bình luận (0)
AH
27 tháng 10 2021 lúc 23:06

Đề không có điều kiện mà chỉ có mỗi đa thức thì làm sao mà tìm $x$ hả bạn?

Bình luận (0)