Nếu x, y là các số thực tỏa mãn \(x^2+y^2=1\) thì GTLN của biểu thức \(\left(x+y\right)^2\) là
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z là các số thực dương thỏa mãn \(x^4+\left(y^2-1\right)^2+z^4\le3\)
Tìm GTLN của biểu thức \(A=\sqrt{2}y\left(x+z\right)+\frac{1}{x^2+y^2+z^2+1}\)
Theo đề bài ta có:
\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)
\(\Rightarrow0< x^2+y^2+z^2\le4\)
Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)
Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)
\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)
Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\)
\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)
\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)
\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)
Vậy ....................
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡
có cách nào không dùng hàm k ???
Hmmm h thì mình chưa ra nhưng bạn muốn theo cách gì để mình tìm?
Cho x,y là các số thực. Tìm GTLN của biểu thức: \(P=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
https://olm.vn/hoi-dap/detail/221163930084.html
cậu tìm link này nhé . mình đã trả lời câu này cho 1 bạn r .
học giỏi
Cho x, y là các số thực không âm. Tìm GTLN của biểu thức:
\(P=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
6.6..6 - 6=?
đặt \(a=x^2,b=y^2\left(a,b\ge0\right)\)thì \(P=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
Zì \(a,b\ge0\)nên
\(\left(a-b\right)\left(1-ab\right)=a-a^2b-b+ab^2\le a+ab^2=a\left(1+b^2\right)\le a\left(1+2b+b^2\right)=a\left(1+b\right)^2\)
Lại có \(\left(1+a\right)^2=\left(1-a\right)^2+4a\ge4a\)
=>\(P\le\frac{a\left(1+b\right)^2}{4a\left(1+b\right)^2}=\frac{1}{4}\)
dấu "=" xảy ra khi zà chỉ khi\(\hept{\begin{cases}a=1\\b=0\end{cases}=>\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)
zậy \(maxP=\frac{1}{4}khi\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm GTLN của biểu thức:
P=\(2x+\left(y-z\right)^2+4\sqrt{yz}\)
Cho 2 số thực x, y thỏa mãn: \(x^2+4y^2=20\). Tìm GTLN của biểu thức: A=\(\left|x+y\right|\)
\(A=\sqrt{\left(1.x+\dfrac{1}{2}.2y\right)^2}\le\sqrt{\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)}=5\)
\(A_{max}=5\) khi \(\left(x;y\right)=\left(4;1\right);\left(-4;-1\right)\)
Cho các số thực x,y thỏa mãn: \(2\left(x^2+y^2\right)=1+xy\) . GTNN và GTLN của biểu thức \(P=7\left(x^4+y^4\right)+4x^2y^2\)
Làm phần min trước, Max để mai:
Ta chứng minh \(P\ge\frac{18}{25}\).
*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)
*Nếu x khác 0. Xét hiệu hai vế ta thu được:
\(\ge0\)
P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D
Cách khác đơn giản hơn:
Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)
\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)
\(1+xy=2\left(x^2+y^2\right)\ge4xy\) => \(xy\le\frac{1}{3}\)
\(1+xy=2\left(x^2+y^2\right)=2\left(x+y\right)^2-4xy\ge-4xy\) => \(xy\ge-\frac{1}{5}\)
=> \(-\frac{1}{5}\le xy\le\frac{1}{3}\)
\(P=7.\left[\left(x^2+y^2\right)^2-2x^2y^2\right]+4x^2y^2\)
\(=7.\left(\frac{1+xy}{2}\right)^2-10x^2y^2=\frac{-33x^2y^2+14xy+7}{4}\)
đặt \(t=xy\)
\(P=\frac{-33t^2+14t+7}{4}\)
........................
\(P_{min}=\frac{18}{25}\) tại \(xy=-\frac{1}{5}\)
\(P_{max}=\frac{70}{33}\) tại \(xy=\frac{7}{33}\)
với x,y là những số thực thoả mãn điều kiện :\(0< x\le y\le2\) và \(2x+y\ge2xy\).TÌm GTLN của biểu thức:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Cho x,y là hai số thực thỏa mãn xy+\(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =1
Tính giá trị của biểu thức M=(x+\(\sqrt{1+y^2}\))(y+\(\sqrt{1+x^2}\))
Lời giải:
$xy+\sqrt{(1+x^2)(1+y^2)}=1$
$\Leftrightarrow \sqrt{(1+x^2)(1+y^2)}=1-xy$
$\Rightarrow (1+x^2)(1+y^2)=(1-xy)^2$ (bp 2 vế)
$\Leftrightarrow x^2+y^2=-2xy$
$\Leftrightarrow (x+y)^2=0\Leftrightarrow x=-y$.
Khi đó:
$M=(x+\sqrt{1+(-x)^2})(-x+\sqrt{1+x^2})=(\sqrt{1+x^2}+x)(\sqrt{1+x^2}-x)$
$=1+x^2-x^2=1$
Cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8