tìm n sao cho
a)n+3 chia hết cho n-1
b)4n+3 chia hết cho 2n+1
tìm số tự nhiên n sao cho:
a,2n+7 chia hết cho n+1
b,4n+9 chia hết cho 2n+3
c,6n+3 chia hết cho 4n+1
d,2^2+2 chia hết cho n+1
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
4-3=2 yêu anh ko hề sai
Tìm n ϵ Z sao cho:
a) 25 chia hết cho n + 2
b) 2n + 4 chia hết cho n - 1
c) 1 - 4n chia hết cho n + 3
a) \(25⋮n+2\left(n\in Z\right)\)
\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)
b) \(2n+4⋮n-1\)
\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)
\(\Rightarrow2n+4-2n+2⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)
c) \(1-4n⋮n+3\)
\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)
\(\Rightarrow1-4n+4n+12⋮n+3\)
\(\Rightarrow13⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)
a) n ϵ{−3;−1;−7;3;−27;23}
b) n ∈{0;2;−1;3;−2;4;−5;7}
c) n ϵ {−4;−2;−15;10}
Tìm stn n sao cho
a) n + 3 chia hết cho n - 2
b)2n + 5 chia hết cho n + 1
c)2n + 1 chia hết cho 6 - n
d)4n + 3 chia hết cho 2n + 6
a) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=> 5 chia hết cho n-2
U(5)=1;5
=>n=3;7
Ta có: n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
b)\(\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{3}{n+1}=2+\frac{3}{n+1}\in Z\)
=>3 chia hết n+1
=>n+1 thuộc Ư(3)={1;3} (vì n thuộc N)
=>n thuộc {0;2}
c)\(\frac{4n+3}{2n+6}=\frac{2\left(2n+6\right)-9}{2n+6}=\frac{2\left(2n+6\right)}{2n+6}-\frac{9}{2n+6}=2-\frac{9}{2n+6}\in Z\)
=>9 chia hết 2n+6
=>2n+6 thuộc Ư(9)={1;3;9} (vì n thuộc N)
=>n thuộc rỗng
Tìm n sao cho:
a) n+3 chia hết cho n-1
b) 4n+3 chia hết cho 2n+1
a) n+3 chia hết cho n+1
Hay n+1+2 chia hết cho n+1
2 chia hết cho n+1
Hay n+1 thuộc ước của 2.
Mà Ư(2)=1;2
Suy ra n=0 hoặc n=1.
Vậy n=0 hoặc 1.
b)4n+3 chia hết cho 2n+1
Hay 2n+1+2n+2 chia hết cho n+1
2n+2 chia hết cho 2n+1
2n+1+1 chia hết cho 2n+1
1 chia hết cho 2n+1
Suy ra n=0
Vậy n=0
a)Ta có:n+3 chia hết cho n-1
Hay (n-1)+4 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)
=>Ư(4)={1;2;4}
=>n-1={1;2;4}
=>n={2;3;5}
b)Ta có:4n+3 chia hết cho 2n+1
Hay (4n+2)+1 chia hết cho 2n+1
=>2(2n+1)+1chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1
=>1 chia hết cho 2n+1
=>2n+1=1
=>2n=1-1
=>2n=0
=>n=0:2
=>n=0
Chú ý:những thừ như" chia hết cho" bạn nên viết vào vở bằng kí hiệuTìm số nguyên n sao cho :
a ) 4n - 5 : 2n -1
b) 2- 4n chia hết cho n-1
c) n^2 + 3n + 1 : n + 1
D) 3 n + 5 chia hết cho n -2
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
Tìm số tự nhiên n sao cho:
a) 2n+9 chia hết cho n-3
b) 3n-1 chia hết cho 3-2n
c) 15-4n chia hết cho n
d) n+13 chia hết cho n-5
e) 15-2n chia hết cho n+1
g) 6n+9 chia hết cho 4n-1
Mọi người giải giúp mình với
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
tìm số tự nhiên n sao cho:
a) n+2 chia hết cho n-1
b)2n+7 chia hết cho n+1
c)2n+1 chia hết cho 6-n
d)3n chia hết cho 5-2n
e)4n+3 chia hết cho 2n+6
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
a) n+2 chia hết cho n-1
=>n-1+3 chia hết cho n-1
=>3 chia hết cho n-1
b)2n+7 chia hết cho n+1
=>2(n+1)+5 chia hết cho n+1
=>5 chia hết cho n+1
c) 2n+1 chia hết cho 6-n
=>2(6-n)+13 chia hết cho 6-n
13 chia hết cho 6-n ( bài này không chắc )
d) 3n chia hết cho 5-2n ( ko bt làm )
e) 4n+3 chia hết cho 2n+6
=>4n+3 chia hết cho 4n+12 ( vô lí )
Tìm số tự nhiên n, sao cho:
a. n+2 chia hết cho n-1
b. 2n+7 chia hết cho n+1
c.2n+1 chia hết cho 6-n
d. 3n chia hết cho 5-2n
e. 4n+3 chia hết cho 2n+6
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
Tìm số tự nhiên n sao cho:
a. 4n + 3 chia hết cho 2n + 1
b. 3n - 5 chia hết cho 4n + 8
c. n+ 3 chia hết cho n- 1
d. 3n + 1 chia hết cho 11-n
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp