Những câu hỏi liên quan
BD
Xem chi tiết
MH
Xem chi tiết
EC
5 tháng 8 2021 lúc 16:28

undefinedundefined

Bình luận (0)
EC
5 tháng 8 2021 lúc 16:29

nếu khó nhìn để mik đánh lại

Bình luận (0)
EC
5 tháng 8 2021 lúc 16:41

Ta có:\(A=\dfrac{xy}{x+y}+\dfrac{yz}{y+z}+\dfrac{zx}{z+x}\)

             \(=\dfrac{x\left(x+y\right)-x^2}{x+y}+\dfrac{y\left(y+z\right)-y^2}{y+z}+\dfrac{z\left(z+x\right)-z^2}{z+x}\)

             \(=\left(x+y+z\right)-\left(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\right)\)

Ta có:\(\dfrac{x^2}{x+y}+\dfrac{x+y}{9}\ge2\sqrt{\dfrac{x^2}{x+y}.\dfrac{x+y}{9}}=\dfrac{2x}{3}\)

Tương tự,ta có:\(\dfrac{y^2}{y+z}+\dfrac{y+z}{9}\ge\dfrac{2y}{3};\dfrac{z^2}{z+x}+\dfrac{z+x}{9}\ge\dfrac{2z}{3}\)

Cộng vế với vế ta có:

\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}+\dfrac{2\left(x+y+z\right)}{4}\ge\dfrac{2\left(x+y+z\right)}{3}\)

\(\Leftrightarrow\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{2\left(x+y+z\right)}{3}-\dfrac{2\left(x+y+z\right)}{4}=\dfrac{2.9}{3}-\dfrac{9}{2}=\dfrac{3}{2}\)

\(\Rightarrow A\le9-\dfrac{3}{2}=\dfrac{15}{2}\)

Dấu "=" xảy ra ⇔ x=y=z=3

Vậy,Max A=\(\dfrac{15}{2}\) ⇔ x=y=z=3

Bình luận (0)
HL
Xem chi tiết
AH
7 tháng 9 2024 lúc 23:44

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{6x+y+z}\leq \frac{1}{64}(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{1}{64}(\frac{6}{x}+\frac{1}{y}+\frac{1}{z})$

Tương tự:

$\frac{1}{x+6y+z}\leq \frac{1}{64}(\frac{1}{x}+\frac{6}{y}+\frac{1}{z})$
$\frac{1}{x+y+6z}\leq \frac{1}{64}(\frac{1}{x}+\frac{1}{y}+\frac{6}{z})$
Cộng theo vế các BĐT trên và thu gọn thì:

$A\leq \frac{1}{64}(\frac{8}{x}+\frac{8}{y}+\frac{8}{z})=\frac{1}{8}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{xy+yz+xz}{8xyz}=\frac{4xyz}{8xyz}=\frac{1}{2}$

Vậy $A_{\max}=\frac{1}{2}$

Giá trị này đạt tại $x=y=z=\frac{3}{4}$

Bình luận (0)
GR
Xem chi tiết
LM
Xem chi tiết
CA
4 tháng 12 2021 lúc 22:33

sai đề

Bình luận (0)
NL
4 tháng 12 2021 lúc 23:04

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

Bình luận (0)
LB
Xem chi tiết
NQ
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Bình luận (0)
H24
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Bình luận (0)
LB
2 tháng 7 2017 lúc 21:40
sai rồi hehe
Bình luận (0)
DL
Xem chi tiết
H24
5 tháng 3 2019 lúc 19:53

\(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)

\(P=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)

\(P\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
GR
Xem chi tiết
GR
28 tháng 3 2019 lúc 17:44

Chết ạ, mình bị nhầm đề, phải là: xy/2y+4x = yz/4z+6y = zx/6x+2z = xyz/x+y+z

Bình luận (0)
H24
Xem chi tiết
LH
7 tháng 6 2021 lúc 17:38

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

Bình luận (0)