Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ các tiếp tuyến AB và AC đến (O) với B, C là tiếp điểm. Gọi H là giao điểm của BC với OA. Vẽ CD là đường kính của (O), AD cắt đường tròn (O) tại điểm thứ 2 là E. a) Chứng minh: ∆CED vuông tại E và OA vuông góc BC tại H b) Chứng minh AE. AD = AH. AO và AHE = ADO c) Gọi I là giao điểm của BC và DE. Chứng mình DHO = EHA và 1/AE + 1/AD = 2/AI