tính giá trị biểu thức 4s-3*2023 biết s=1-3+3*2-3*3+.....-3*2021+3*2022
tính giá trị bt :4S-3^2023
Biết S=1-3-3^2-3^3+...-3^2021+3^2022
Lời giải:
$S=1-3+3^2-3^3+...-3^{2021}+3^{2022}$
$3S=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}$
$\Rightarrow S+3S=3^{2023}-1$
$\Rightarrow 4S=3^{2023}-1$
$\Rightarrow 4S-3^{2023}=-1$
Ta có S = 1 + 3 + 32 + ... + 32022
3S = 3 + 32 + 33 + ... + 32023
2S = ( 3 + 32 + 33 + ... + 32023 ) - ( 1 + 3 + 32 + ... + 32022 )
= 32023 - 1
⇒ 4S - 22023 = 2( 32023 - 1 ) - 22023
= 2 . 32023 - 2 - 32023
= 32023( 2 - 1 ) - 2
= 32023 - 2
Vậy 4S = 32023 - 2
tìm giá trị biểu thức A biết A= 1-2+3-4+5-6+...+2021-2022+2023
A=(1-2)+(3-4)+...+(2021-2022)+2023
=2023-(1+1+1+...+1)
=2023-1011
=1012
222222222222222222222222222222222222222222222222222222222222
tính giá trị biểu thức sau
4A-3 mũ 2023
A=1-3+3 mũ 2 -3 mũ 3 +...........-3 mũ 2021+ 3 mũ 2022
cho mình câu trả lời chi tiết nhé
\(4A-3^{2023}\) hay \(4A=3^{2023}\) hả bạn
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
Tính giá trị biểu thức:
A= 1-2-3+4+5-6-7+...+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
\(S=1+3+3^2+...+3^{2022}\\ 3S=3+3^2+3^3+...+3^{2023}\\ 3S-S=\left(3+3^2+3^3+...+3^{2023}\right)-\left(1+3+3^2+...+3^{2022}\right)\\ 2S=3^{2023}-1\\4S=\dfrac{3^{2023}\times2-1\times2}{2}\\ 4S=\dfrac{\left(3^{2023}-1\right)\times2}{2}\\ 4S=3^{2023}-1\\ 4S-3^{2023}=3^{2023}-1-3^{2023}\\ 4S-3^{2023}=\left(-1\right)\)
Tìm giá trị của biểu thức bt: \(a=\dfrac{2021}{2022},b=\dfrac{2023}{2022}\\ B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{\dfrac{-5bb}{6}}\)
\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)
\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)
Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:
\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)
Tính giá trị của biểu thức, bt: \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\\ A=\dfrac{3.\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{5a}{b}+\dfrac{4a}{b}}\)
\(A=\dfrac{3\cdot\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{-5a}{b}+\dfrac{4a}{b}}\\ =\left(\dfrac{3a}{b}+\dfrac{a}{b}\right):\left(\dfrac{5a}{b}+\dfrac{4a}{b}\right)\\ =\dfrac{4a}{b}:\dfrac{9a}{b}\\ =\dfrac{4a}{b}\cdot\dfrac{b}{9a}\\ =\dfrac{4}{9}\)
Vậy `a=2021/2022` ; `b=2023/2022` thì `A=4/9`
Câu 1:Giá trị của biểu thức : A = 5 - 2 + 3 - 4 +5 - 6 +...+2021 - 2022 + 2023 là:
A.2021 B. 2022 C.1016 D.1006
Câu 2:Hình tam giác ABC đều có:
A. AB = BC = CA C. AB < BC < CA
B. AB > BC > CA D. Độ dài AB,BC,CA khác nhau
Câu 3:Tập hợp A các số tự nhiên bao gồm các phần lớn hơn 5 và không vượt quá 8 là:
A. A ={6;7} B. A ={6;7;8} C. A ={5;6;7;8} D. A ={7;8}
Câu 4:
Câu 5:Tìm tổng tất cả số nguyên x,biết:-4 < x < 3
A.-3 B.0 C.1 D.-1
Câu 6:Cho tập hợp M = { 1;5;a;b } Trong các khẳng định sau,khẳng định sai là
A. 1 ∈ M B. c ∉ M C. a ∈ M D. b ∉ M
Câu 2: A
Câu 3: B
Câu 4: D
Câu 5: A
Câu 6: D