Tìm giá trị lớn nhất hoặc nhỏ nhất: 3x^2 - 5
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
D=-3x2 +2x-5
\(D=-3x^2+2x-5\)
\(=-\left(3x^2-2x+5\right)\)
\(=-\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{11}{3}\right]\)
\(=-\left[\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2+\frac{11}{3}\right]\)
\(=-\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2-\frac{11}{3}\le\frac{-11}{3}\)
Vậy \(D_{max}=\frac{-11}{3}\Leftrightarrow\sqrt{3}x-\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{2}{3}\)
bài này làm đúng nhưng mà sai xíu là \(\frac{2}{\sqrt{3}}\)thành \(\frac{1}{\sqrt{3}}\)và \(-\frac{11}{3}\)thành \(-\frac{14}{3}\)
tìm x
1/4 - 5/2 x |3x - 1/5|= 2/3 x |3x -1/5| - 2/3
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức sau
A=|4x - 1/4|+2016
B=2014-|3x - 1/5|
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= 3/2x²+2x+3
b) T= 5/3x²+4x+15
c) V= 1/-x²+2x-2
d) X= 2/-4x²+8x+5
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
tìm x : x^3 + 3x = 3x^2 +1
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau : x^2 - 3x
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
1;\(x^3+3x=3x^2+1\)
\(\Rightarrow x^3+3x-3x^2-1=0\)
\(\Rightarrow x^3-3x^2+3x-1=0\)
\(\Rightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x=1\)
2;\(x^2-3x\)
\(=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(-\frac{9}{4}\right)\ge-\frac{9}{4}\left[\left(x-\frac{3}{2}\right)^2\ge0\right]\)
Vậy Min \(x^2-3x=-\frac{9}{4}< =>x=\frac{3}{2}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
E= x2 +3x+7
\(E=x^2+3x+7=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)
Vậy \(E_{min}=\frac{19}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các đa thức sau :
L = - 25x² + x + 3
M = - 5x² + 3x - 2
N = - 2x² + 5x + 5
Tìm giá trị lớn nhất hoặc Nhỏ nhất của các biểu thức sau C =5-6x-x^2
D=3x(x+4)-9
Tìm giá trị lớn nhất hoặc nhỏ nhất của đa thức sau:
\(\dfrac{31}{x^2-3x+11}+15\)
Lời giải:
Ta có:
$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$
$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$
$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$
Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$
tìm giá trị nhỏ nhất hoặc lớn nhất
P=1-3x-5x2