Cho a/ b = c/ d Chứng minh rằng : a^2 + a*c/ c^2-a*c = b^2+b*d/d^2-b*d
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
Bài 1
a) Cho ba số a, b, c dương . Chứng tỏ rằng M = a/a+b + b/b+c + c/a+c không là số nguyên
b) Cho tỉ lệ thức a/b =c/d ( b,d khác 0 ; a khác -c ; b khác -d ) . Chứng minh: (a+b/c+d)^2 = a^2+b^2/c^2+d^2
c) Cho 1/c = 1/2(1/a+1/b) (Với a, b, c khác 0; b khác c). Chứng minh rằng: a/b=a-c/c-b
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a-b}{c-d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (1)
Lại có \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{a.b}{c.d}\left(\text{ do }\frac{a}{b}=\frac{c}{d}\right)\)(2)
Từ (1) và (2) => \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a.b}{c.d}\)
Cho a,b,c,d thỏa mãn a+b=c+d; \(a^2\)+\(b^2\)=\(c^2\)+\(d^2\)
Chứng minh rằng \(a^{2013}\)+\(b^{2013}\)+\(c^{2013}\)+\(d^{2013}\)
Cho a/b=c/d. Chứng minh rằng a^2+b^2/c^2+d^2=a×b/c×d.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a.b}{c.d}\)(Dấu "." là dấu nhân)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)
Theo tính chất ..............(mk quên câu này rùi)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)
cho a/b = c/d chứng minh rằng ( a + b )^2 / a^2 + b^2 = ( c + d )^2 / c^2 + d^2
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk\)
\(c=dk\)
=> \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{bk^2+b^2}=\frac{k}{k^2}\left(1\right)\)
\(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{dk^2+d^2}=\frac{k}{k^2}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> Đpcm
1.cho a,b,c là các số dương lớn hơn 1.Chứng minh a^2/(b-1)+b^2/(c-1)+c^2/(a-1)>=12
2.Cho các số tự nhiên a,b,c,d. Chứng minh rằng M=a/(a+b+c)+b/(b+c+d)+c/(c+d+a)+d/(d+a+b) không là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath