NN

Cho a/ b = c/ d Chứng minh rằng : a^2 + a*c/ c^2-a*c = b^2+b*d/d^2-b*d

DH
10 tháng 3 2017 lúc 14:46

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk

\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2-bk.dk}=\frac{b^2.k^2+k^2bd}{d^2k^2-k^2bd}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}\) (đpcm)

Vậy \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
LD
Xem chi tiết
TA
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
ET
Xem chi tiết
NH
Xem chi tiết