Những câu hỏi liên quan
NC
Xem chi tiết
H24
2 tháng 12 2016 lúc 17:26

Xét vế phải\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}\)

=\(\left(1+\frac{1}{3}+\frac{1}{5}+..+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\right)\)

=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-...-\frac{1}{100}\)

=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Bình luận (0)
TA
Xem chi tiết
NT
2 tháng 8 2023 lúc 23:18

\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)

\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)

\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)

\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)

\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)

\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)

\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)

Bình luận (0)
LN
Xem chi tiết
HT
Xem chi tiết
PG
6 tháng 2 2023 lúc 20:07

Ta có:  \(\dfrac{1}{101}>\dfrac{1}{200}\)

Tương tự ta có: \(\dfrac{1}{102}>\dfrac{1}{200}\) ;....; \(\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{200}.100\)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{100}{200}\)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\left(đpcm\right)\)

Bình luận (0)
LY
Xem chi tiết
XC
Xem chi tiết
VM
Xem chi tiết
VM
26 tháng 2 2016 lúc 15:25

Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho

Bình luận (0)
DL
28 tháng 2 2016 lúc 21:03

chứng minh cái gì bạn

Bình luận (0)
DL
28 tháng 2 2016 lúc 21:05

sory nhin nham mik rõ đầu bài rồi để mik giải cho

Bình luận (0)
LD
Xem chi tiết
SN
2 tháng 4 2015 lúc 11:04

1/101+1/102+..+1/200=(1+1/2+1/3+...+1/100)+1/101+1/102+1/103+...+1/200-(1+1/2+1/3+...+1/100)

=(1/2+1/4+1/6+...+1/200)+(1+1/3+1/5+...+1/199)-2(1/2+1/4+1/6+...+1/200)

=(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)

=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200

suy ra ĐPCM

Bình luận (0)
VC
20 tháng 4 2016 lúc 13:18

nguyen thieu cong thanh ơi cho mình hỏi:

sao lại là :2(1/2+1/4+1/6+...+1/200)

phải là : (1/2+1/4+1/6+...+1/200) chứ

đúng hok?????

Bình luận (0)
LH
9 tháng 12 2016 lúc 16:18

sao co 2 o dau ra vậy

Bình luận (0)
LK
Xem chi tiết