Những câu hỏi liên quan
TN
Xem chi tiết
NT
24 tháng 2 2023 lúc 23:10

Chọn B

Bình luận (0)
DM
Xem chi tiết
GT
Xem chi tiết
QB
Xem chi tiết
QB
7 tháng 3 2022 lúc 22:43

giúp em với ạ

 

Bình luận (0)
NT
7 tháng 3 2022 lúc 22:45

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó:ΔADF=ΔEDC

Suy ra: AF=EC

c: Ta có:BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

hay ΔBFC cân tại B

Bình luận (1)
NB
Xem chi tiết
NK
16 tháng 7 2017 lúc 16:59

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI. Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. => IK= KH= x( x>0) Xét tam giác ABH vuông tại A=> AH2= HK x BH <=> AH2= x(2x+3). Mà AH= 2 căn 5 => x(2x+3)= 20=>x=2.5 Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

Bình luận (0)
ZN
30 tháng 5 2020 lúc 21:11

Tự vẽ hình nha

giải 

Kẻ AH vuông góc với AB tại A ( AH thuộc BI ) kẻ AK vuông góc với BI

Tự chứng minh tam giác AIH cân tại A => AH = AI = 2 căn 5

                                                              => IK = KH = x ( x > 0 )

Xét tam giác ABH vuông tại A => AH2  = HK x BH

                                                 => AH2 = x ( 2x + 3 ) mà AH = 2 căn 5

=> x ( 2x + 3 ) = 20 => x = 2.5

Có AB2 = BH x BK = ( 3 + x )( 3 + 2x )=44 => AB = 2 căn 11

Hok tốt ^^

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
24 tháng 7 2021 lúc 23:47

Bài 2: 

Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)

\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)

Xét tứ giác ACDB có 

CD//AB(cùng vuông góc với AC)

nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)

Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)

Bình luận (0)
LN
Xem chi tiết
NT
11 tháng 7 2021 lúc 21:41

a) Xét ΔABD và ΔACD có

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung

Do đó: ΔABD=ΔACD(c-g-c)

b) Ta có: ΔABD=ΔACD(cmt)

nên BD=CD(hai cạnh tương ứng)

hay D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

CF là đường trung tuyến ứng với cạnh AB(gt)

AD cắt CF tại G(gt)

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

c) Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Xét ΔADC có

H là trung điểm của CD(gt)

HE//AD(cùng vuông góc với BC)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔADC vuông tại D(cmt)

mà DE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(DE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay DE=EC

Xét ΔDEC có ED=EC(cmt)

nên ΔDEC cân tại E(Định nghĩa tam giác cân)

Bình luận (2)
DD
Xem chi tiết
NT
6 tháng 3 2020 lúc 15:11

B N C A D M

a,Xét tam giác vuông ABD và NBD có 

BD chung

ABD^=NBD^

=>Tam giác ABD = tam giác NBD (ch-gn)

c,Ta có : AB>AD 

NC>ND

Mà AD=ND

=>AB+NC>2AD

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NH
18 tháng 3 2020 lúc 11:23

A B C N D M

a, Xét △DBA vuông tại A và △DBN vuông tại N

Có: DB là cạnh chung

       ABD = NBD (gt)

=> △DBA = △DBN (ch-gn)

b, Vì △DBA = △DBN (cmt) => AD = ND và AB = NB

Xét △CAB vuông tại A và △MNB vuông tại N

Có: ABC là góc chung

      AB = NB (cmt)

=> △CAB = △MNB (cgv-gnk)

=> BC = MB (2 cạnh tương ứng)

=> △BMC cân tại B

c, Xét △NDC vuông tại N có: ND <  CD (cạnh góc vuông bé hơn cạnh huyền)

=> AD < CD (ND = AD) 

Xét △ABC vuông tại A có: AC < BC (cạnh góc vuông bé hơn cạnh huyền)

=> AD + CD < NC + NB

=> AD + AD < AD+ CD < NC + AB  (AB = NB; AD < CD)

=> 2 . AD < NC + AB (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa