Những câu hỏi liên quan
GL
Xem chi tiết
YN
2 tháng 2 2023 lúc 22:56

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+2.\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+2.\left(\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2005.2006}\right)\)

\(=1-\dfrac{2}{2005.2006}\)

\(=\dfrac{2011014}{2011015}\).

Bình luận (0)

Ta có:

\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)

\(M=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2004.2005.2006}\right)\)

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(M=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2005.2006}\right)\)

 

Bình luận (0)
MX
Xem chi tiết
PD
14 tháng 7 2018 lúc 12:39

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2004.2005}-\frac{1}{2005.2006}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2005.2006}\right)\)

\(=\frac{1}{4}-\frac{1}{2.2005.2006}\)

Bình luận (0)
LM
Xem chi tiết
H24
11 tháng 8 2019 lúc 23:31

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2004.2005.2006}\)

\(=\frac{2}{1.2}-\frac{2}{2.3}+\frac{2}{2.3}-\frac{2}{3.4}+...+\frac{2}{2004.2005}-\frac{2}{2005.2006}\)

\(=\frac{2}{1.2}-\frac{2}{2005.2006}\)

\(=1-\frac{1}{2011015}\)

\(=\frac{2011015}{2011015}-\frac{1}{2011015}\)

\(=\frac{2011014}{2011015}\)

Cbht

Bình luận (0)
DN
Xem chi tiết
LK
7 tháng 5 2018 lúc 22:23

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

Bình luận (0)
NU
8 tháng 5 2018 lúc 9:27

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

Bình luận (0)
TT
Xem chi tiết
AH
3 tháng 11 2023 lúc 16:00

Lời giải:

Gọi tổng trên là A

$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{101.102.103}$

$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{103-101}{101.102.103}$

$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{101.102}-\frac{1}{102.103}$

$=\frac{1}{1.2}-\frac{1}{102.103}=\frac{2626}{5253}$

$\Rightarrow A=\frac{1313}{5253}$

Bình luận (0)
TT
Xem chi tiết
NN
15 tháng 5 2023 lúc 20:10

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)

\(B=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(B=2.\left(1-\dfrac{1}{10}\right)\)

\(B=2.\dfrac{9}{10}\)

\(B=\dfrac{9}{5}\)

Bình luận (0)
NB
15 tháng 5 2023 lúc 20:04

anh ơi , đại học rồi mà ko giải đc bài này ạ?

 

Bình luận (0)
TH
15 tháng 5 2023 lúc 20:04

hmm

Bình luận (0)
TN
Xem chi tiết
HN
Xem chi tiết
SG
29 tháng 11 2016 lúc 23:07

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

Bình luận (0)
TL
Xem chi tiết
NT
2 tháng 4 2016 lúc 21:45

khó à nha

Bình luận (0)