cho biểu thức A=-3/n+6 a) tìm số nguyên n để A là phân số b) tìm phân số A biết n=2,n=4 c) tìm số nguyên n để A là số nguyên
a) A là phân số khi n+6 là số nguyên khác 0
\(\Rightarrow n\ne-6\)
Vậy n là số nguyên khác -6.
b) Với n=2, ta có : \(\frac{-3}{n+6}=\frac{-3}{2+6}=\frac{-3}{8}\)
Với n=4, ta có : \(\frac{-3}{n+6}=\frac{-3}{4+6}=\frac{-3}{10}\)
c) A là số nguyên khi -3\(⋮\)n+6
\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-7;-5;-9;-3\right\}\)
a)Để A là phân số thì \(n+6\ne0\Leftrightarrow n\ne-6\)
Vậy để A là phân số thì \(n\ne-6\)
b) Thay n=2(tm) vào A, ta có:
\(A=\frac{-3}{2+6}=\frac{-3}{8}\)
Thay n=4 (tm) vào A, ta có:
\(A=\frac{-3}{4+6}=\frac{-3}{10}\)
c) Để A là số nguyên \(\Rightarrow\frac{-3}{n+6}\)là số nguyên
\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
n+6 | -3 | -1 | 1 | 3 |
n | -9 | -7 | -5 | -3 |
Cho phân số với n là số nguyên khác 1 1. Tìm phân số A với n=2; n=4;n=-4 2. Tìm số nguyên n để A là số nguyên. 3. Tìm số nguyên n để A>0
gfvfvfvfvfvfvfv555
Cho A = 3/n+2 ( 3 trên n+ 2 )
a. tìm số nguyên n để :
A là phân số
A ko phải là phân số
A là phân số âm
A là phân số dương
b. Tìm số nguyên n để A cũng là số nguyên
Cho biểu thức A=3/n+2 với n là số nguyên
a) số nguyên n phải thỏa mãn điều kiện gì để A là phân số ?
b) Tìm phân số A biết n=0 n=2 n=-7
c) Tìm các số nguyên n để A là một số nguyên
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
cho biểu thức A=4/n-3:
a: Tìm điều kiện của n để a là phân số
b: Tìm phân số A để biết n=0; n= 10; n=-2
a, \(ĐK:n-3\ne0\Leftrightarrow n\ne3\)
b, Ta có : \(A=\dfrac{4}{n-3}\left(n\ne3\right)\)
n = 0 ( TMđk )
n = 10 ( TMđk )
n = -2 ( TMđk )
Thay n = 0 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}\)\(=\dfrac{4}{-3}=\dfrac{-4}{3}\)
Vậy giá trị của phân số A tại n=0 là \(\dfrac{-4}{3}\)
Thay n=10 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Vậy giá trị của phân số A tại n=10 là \(\dfrac{4}{7}\)
Thay n=-2 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-7}=\dfrac{-4}{7}\)
Vậy giá trị của phân số A tại n=-2 là \(\dfrac{-4}{7}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là p/s thì n ∉ {-1;1;2;3;4;5;7}
b)
+) n=0; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
Cho phân số A= n+2/ n-2 (n ∈ Z; n khác 2)
a) Tìm n để A có giá trị là số nguyên.
b) Tìm n để A là phân số tối giản.
c) Tìm n để A có giá trị nhỏ nhất.
a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A có giá trị là số nguyên thì:
\(4⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(4\right)\)
\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)
b) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A là phân số tối giản thì:
\(4⋮̸\left(n-2\right)\)
\(\Rightarrow n-2\notinƯ\left(4\right)\)
\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))
c) Với \(n>2\) (hoặc \(n< -2\)) thì:
\(A=\dfrac{n+2}{n-2}>0\)
Với \(-2\le n< 2\) thì:
\(A=\dfrac{n+2}{n-2}\le0\)
*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)
*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)
*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)
*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)
\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.
Mà với các giá trị nguyên khác (khác 2) của n thì A>0.
\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)
Cho phân số n+5/n-2(n thuộc N; N>3)
a,Tìm n để phân số có giá trị là STN
b, Tìm n để phân số là phân số tối giản
Bài 1: Tìm điều kiện của số nguyên n để -1 / -n+1 là phân số.
Bài 2: Tìm điều kiện của số nguyên n để n:3 / n:2 là phân số.
Bài 3: Cho A = n-1 / (n-2).(n-1) . Tìm n thuộc Z để :
a) A là phân số .
b) A là số nguyên.
mn giúp mik nha.
Cho biểu thức A = 4/n - 3. a) Tìm điều kiện của n để A là phân số. b) Tìm phân số A biết n = 0; n = 10; n = -2
\(A=\dfrac{4}{n-3}\)
a) Để A là phân số :
\(n-3\ne0\Leftrightarrow n\ne3\)
b)
Với : n = 0 \(\Rightarrow A=\dfrac{4}{0-3}=-\dfrac{4}{3}\)
Với : n = 10 \(\Rightarrow A=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Với : n = -2 \(\Rightarrow A=\dfrac{4}{-2-3}=-\dfrac{4}{5}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là phân số thì \(n\notin\left\{-1;1;2;3;4;5;7\right\}\)
b)
+) n=0, ta có:;
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10, ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2, ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
Chúc bạn học tốt!
Bài 1
Cho A = n-2/n+3 ( n thuộc Z)a, tìm n để A là phân số
b, Tìm n để a nguyên
c, tìm n để A đạt giá trị lớn nhất
Bài 2
Cho A = 10*n/5*n-3.Tìm n để
a, A là phân số
b,n thuộc Z để a nguyên
c, Tìm giá trị lớn nhất của A
Bài 3
Chứng minh rằng xảy n thuộc Z ta có
a,12n+1/n-2 là phân số tối giản
b,2n-3/n-2 là phân số tối giản
c, UWCLN của ( 2n+1;3n+1)=1
Bài 4
Tìm n thuộc Z để ( n^2-n-1) chia hết cho ( n-1)