Những câu hỏi liên quan
AS
Xem chi tiết
NK
7 tháng 3 2017 lúc 20:16

(a;b)=(3;8);(8;3);(4:5);(5:4)

Bình luận (0)
DS
7 tháng 3 2017 lúc 20:07

cho đúng đã thì mới giúp bọn kia toàn trả lời sai

Bình luận (0)
MN
Xem chi tiết
TM
8 tháng 3 2017 lúc 22:06

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{3}{2}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\)

\(\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2\left(a+b+1\right)=ab\Leftrightarrow2a+2b+2-ab=0\)

\(\Leftrightarrow2a-ab-4+2b+6=0\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\)

\(\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)

Đến đây chắc dễ rồi

Bình luận (0)
NH
Xem chi tiết
DT
11 tháng 6 2017 lúc 16:08

a)  Điều kiện :  \(a\ne-b;b\ne1;a\ne-1\)

\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+a^2b+a-b}{1+a}\)

\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)

\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)

P = a + ab - b

b)

P = 3

<=>  a + ab - b = 3

<=>  a(b+1) - (b+1) +1 - 3 = 0

<=>   (b+1)(a-1)  = 2

Ta có bảng sau với a, b nguyên

b+112-1-2
a-121-2-1
b01-2-3
a32-10
so với đk loạiloại 


Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}

Bình luận (0)
H24
Xem chi tiết
H24
25 tháng 8 2017 lúc 14:32

fewqfjkewqf

Bình luận (0)
H24
25 tháng 8 2017 lúc 14:35

Các bạn ơi giải giúp mink vs mink đg cần gấp

Bình luận (0)
ND
15 tháng 7 2018 lúc 10:24

nhiều thế ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Bình luận (0)
TT
Xem chi tiết
AV
Xem chi tiết
TA
Xem chi tiết
AN
9 tháng 5 2017 lúc 14:27

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

Bình luận (0)
TA
9 tháng 5 2017 lúc 19:09

tks bn nhé, bn giúp mk câu 1 được ko

Bình luận (0)
AN
10 tháng 5 2017 lúc 8:24

Thỏa theo nguyện vọng mình làm luôn câu 1 cho b luôn :)

Câu 1/

\(A=\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}\)

Điều kiện: \(y^2-xy+1\ne0\)

Với x, y cùng chẵn, lẻ và x lẻ y chẵn thì tử là số chẵn, mẫu là số lẻ nên A sẽ là số chẵn.

Với x chẵn y lẻ thì tử là số lẻ mẫu là số chẵn nên A không phải là số nguyên.

Từ đây ta có được nếu A là số nguyên tố thì A chỉ có thể là 2.

\(A=\frac{\left(x+1\right)\left(x-y\right)}{y^2-xy+1}=2\)

\(\Leftrightarrow2y^2-xy+y-x^2-x+2=0\)

\(\Leftrightarrow\left(x-y\right)\left(2y+x+1\right)=2\)

\(\Rightarrow\left(x-y,2y+x+1\right)=\left(1,2;2,1\right)\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

Bình luận (0)
PL
Xem chi tiết
DM
Xem chi tiết
AN
11 tháng 4 2017 lúc 9:38

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)

Cộng vế theo vế ta được

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)

\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

Bình luận (0)
AN
10 tháng 4 2017 lúc 22:11

Mai mình làm cho

Bình luận (0)
DM
10 tháng 4 2017 lúc 22:17

ukm mơn alibaba nguyễn nhìu

Bình luận (0)