Những câu hỏi liên quan
LT
Xem chi tiết
NM
8 tháng 10 2021 lúc 15:20

\(a,ĐK:x\le\dfrac{5}{3}\\ PT\Leftrightarrow-3x+5=49\\ \Leftrightarrow x=-\dfrac{44}{3}\left(tm\right)\\ b,ĐK:x\ge-12\\ PT\Leftrightarrow\dfrac{1}{2}x+6=2\\ \Leftrightarrow\dfrac{1}{2}x=-4\\ \Leftrightarrow x=-8\left(tm\right)\\ c,ĐK:x\ge-\dfrac{1}{2}\\ PT\Leftrightarrow2x+1=13+4\sqrt{3}\\ \Leftrightarrow x=\dfrac{12+4\sqrt{3}}{2}=6+2\sqrt{3}\left(tm\right)\\ d,PT\Leftrightarrow\left|3x-1\right|=8\Leftrightarrow\left[{}\begin{matrix}3x-1=8\\1-3x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{7}{3}\end{matrix}\right.\)

Bình luận (0)
ND
Xem chi tiết
LP
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bình luận (0)
NP
Xem chi tiết
H24
4 tháng 4 2022 lúc 16:54

\(a,\)

\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :

\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)

\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)

\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)

\(\Leftrightarrow-3\sqrt{x}+11=0\)

\(\Leftrightarrow-3\sqrt{x}=-11\)

\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)

\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)

\(\Leftrightarrow x=\dfrac{121}{9}\)

Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)

 

 

Bình luận (0)
NN
Xem chi tiết
PN
9 tháng 7 2020 lúc 9:00

mình thêm 1 vài bước nữa , thiếu rồi xin lỗi bạn nhé !

\(\frac{2\left(x+\sqrt{x}\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}=\frac{2\left[\sqrt{x}\left(\sqrt{x}+1\right)\right]^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}=\frac{2x.\left(\sqrt{x}+1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\)

\(=\frac{2x}{x-1}\)(gọn rồi đấy)

Bình luận (0)
 Khách vãng lai đã xóa
PN
9 tháng 7 2020 lúc 8:54

không biết làm gì ngoài nhân chéo :((

\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\left(ĐKXĐ:x\ge0;x\ne1\right)\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\left(x+\sqrt{x}\right)\)

\(=\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}.\left(x+\sqrt{x}\right)\)

\(=\frac{x\sqrt{x}-x\sqrt{x}-\sqrt{x}-\sqrt{x}+4\sqrt{x}+2x-2x+2x-2+2}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}.\left(x+\sqrt{x}\right)\)

\(=\frac{2\left(x+\sqrt{x}\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\)

xong nhé :v bạn làm được tiếp thì làm

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
H24
Xem chi tiết
PT
15 tháng 5 2021 lúc 8:26

???

Bình luận (0)
H24
15 tháng 5 2021 lúc 9:06

\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1)))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`

Bình luận (0)
H24
15 tháng 5 2021 lúc 9:07

\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1))))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`

Bình luận (0)
AB
Xem chi tiết
PB
Xem chi tiết
TK
15 tháng 11 2019 lúc 5:18

ĐK \(x\ge-3\)

PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)

<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)

+  Với x=-3 =>thỏa mãn 

+Với \(x>-3\) ta liên hợp

\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)

<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)

Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)

=> \(x=1\)(TMĐKXĐ)

Vậy \(x=1;x=-3\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết