Tính nhanh các tổng sau : P = 1 +2 +3+.... + (n-3) + (n-2) + (n-1) + n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính nhanh các tổng sau :
K = 1+2+3+......+199+200 ( tổng 200 số tự nhiên liên tiếp từ 1 đến 200)
P = 1+2+3+.....+ (n - 3 ) + ( n - 2 ) + ( n - 1 ) + n
Số số hạng của K là:
(200-1):1+1=200(số)
Tổng các số hạng của K là:
(200+1)x200:2=20100
Còn Tổng P biết n = mấy mà tính
thì bài nâng cao mà nguyen_huu_the
giúp mình nha,thanks
Tính các tổng sau :
a; H = 1 + 2 + 3 + 5 + ..... + ( n - 3 ) + ( n - 2 ) + ( n - 1 ) + n
tính nhanh các tổng sau
1+2+3+.................+n
1+3+5+7+...........................+(2n-1)
2+4+6+.................................+2n
1+2+3+.................+n=(n+1).n/2
1+3+5+7+...........................+(2n-1)=(1+2n-1).n/2=2n.n/2=n.n
2+4+6+.................................+2n=(2n+2).n/2=n.(n+1)
I.Tính nhanh tổng sau:
1+2+4+8+18+ ... +8192
II. Tính các tổng sau:
1+2+3+4+..+n
2+4+6+8+...+2n
1+3+5+7+...2n+1
1. Đặt A × 2 = 2 + 4 +8 +16 + 32 + ....+ 16384
Cùng thêm 1 và bớt 1 ta có như sau:
A × 2 = 1 + 2 + 4 + 8 + 16 + .....+ 1892 + 16384 -1
A × 2 = A + 16384 - 1
A = 16384 -1
A = 16383
2.
1, đề sai
2,Đây là tổng n số hạng đầu cấp số cộng có công sai d = 2 và u1= 2
=> s = (2+ 2n)* (n/2) <=> s = (1+n)n
3,1+3+5+7+...+ (2n+1) = [1+ (2n+1)] + [3 + (2n - 1)] + .... = [1+ (2n+1)] x [(n+1)/2]
vì 1 + (2n+1) = 3 + (2n-1) =...
Từ 1 đến 2n+1 số có 2n+1 số, trong đó có n số chẵn và n+1 số lẽ, do 1 và 2n+1 là số lẽ mà.
Do đó có (n+1)/2 cặp tất cả
tính các tổng sau:
A=1.2+2.3+3.4+...+n(n+1)
B=1.2.3+2.3.4+...+n(n+1)(n+2)
C=1.2+3.4+5.6+...+2017.2018
D=1.4+2.5+3.6+...+n(n+3)
Giúp mk nha, ai nhanh mk k!
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
Tính nhanh tổng sau: P= 1/2+1/2^2+1/2^3+1/2^4+.........1/2^n
giúp mình nha,thanks
Viết chương trình nhập số N sau đó tính các tổng sau
S1=1 + 2 + 3 +.....+ N
S2=1 +1/2+1/3+.....+1/N
S3=1 +2 2 +3 3 +... +N N
S4=1*2*3...*N
S5= 1 + 1/2! + 1/3! + ..... + 1/N!
S6= 1/(1*2) + 1/(2*3) + 1/(3*4) + ..... + 1/(N*(N+1))
Các bạn giải giúp mình. Mình cảm ơn
#include <bits/stdc++.h>
using namespace std;
long long s,i,n;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++)
s=s+i;
cout<<s;
return 0;
}