Những câu hỏi liên quan
NC
Xem chi tiết
ML
18 tháng 7 2015 lúc 21:50

\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1.

Bình luận (0)
NC
Xem chi tiết
TT
19 tháng 6 2015 lúc 8:41

GTLN là \(\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\) Sách mình ghi thế nhưng không có lời giải li ke nha

Bình luận (0)
TY
Xem chi tiết
BH
12 tháng 4 2018 lúc 14:02

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{xyz+xz+z}+\frac{yxz}{yz.xz+xyz+xz}+\frac{z}{zx+z+1}\) Thay xyz=1 vào ta được:

\(A=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{zx+z+1}\)

\(A=\frac{zx+z+1}{zx+z+1}=1\)

=> A=1

Bình luận (0)
H24
Xem chi tiết
DH
1 tháng 11 2017 lúc 19:31

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

Bình luận (0)
NP
Xem chi tiết
CH
Xem chi tiết
NC
13 tháng 12 2019 lúc 12:45

1

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
NQ
8 tháng 3 2018 lúc 12:30

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

Bình luận (0)
TD
8 tháng 3 2018 lúc 12:34

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

Bình luận (0)
NA
1 tháng 11 2019 lúc 20:33

Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)

\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)

\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow\)x=y

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PT
4 tháng 12 2017 lúc 20:23

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (2)
H24

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

Bình luận (0)
PP
Xem chi tiết
MT
22 tháng 5 2016 lúc 22:50

Đặt t=\(\sqrt{x-1}\Rightarrow t^2-1=x\)

Suy ra: \(y=\frac{t^2-1+3t+1}{t^2-1+4t+2}=\frac{t^2+3t}{t^2+4t+1}\)

=>\(yt^2+4yt+y-t^2-3t=0\)

<=>\(\left(y-1\right)t^2+\left(4y-3\right)t+y=0\)

\(\Delta=16y^2-48y+9-4y^2+4y=12y^2-44y+9\)

Để y có nghĩa thì: \(\Delta\ge0\Rightarrow12y^2-44y+9\ge0\)

Bạn tự xét dấu r làm típ ,nhưng mà số xấu quá

Bình luận (0)
MT
22 tháng 5 2016 lúc 22:51

a đúng r nhầm chổ kia

Bình luận (0)
MT
22 tháng 5 2016 lúc 22:58

\(\text{Đặt }t=\sqrt{x-1}\Rightarrow t^2+1=x\)

Suy ra: \(y=\frac{t^2+3t+2}{t^2+4t+3}\)

=>\(\left(y-1\right)t^2+\left(4y-3\right)t+3y-2\)

\(\Delta=4y^2-28y+1\)

Để y có nghĩa thì:

\(4y^2-28y+1\ge0\Leftrightarrow y\le\frac{7-4\sqrt{3}}{2};\frac{7+4\sqrt{3}}{2}\le y\)

Số xấu ko bik lại sai chỗ nào

Bình luận (0)