Những câu hỏi liên quan
CH
Xem chi tiết
NL
8 tháng 1 2024 lúc 13:26

a.

\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)

Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)

\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)

Hay \(2^{2024}\) chia 7 dư 4

b.

\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)

Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)

\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)

Hay \(5^{70}+7^{50}\) chia 12 dư 2

Bình luận (0)
NL
8 tháng 1 2024 lúc 13:34

c.

\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)

Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)

\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)

Hay \(3^{2005}+4^{2005}\) chia 11 dư 2

d.

\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)

Hay \(1044^{205}\) chia 7 dư 1

e.

\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)

Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)

\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)

hay \(3^{2003}\) chia 13 dư 9

Bình luận (0)
LH
Xem chi tiết
NP
19 tháng 10 2017 lúc 19:51

1.Gọi số tự nhiên cần tìm là A

Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)

Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)

Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23

Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1

Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)

                                                   => 2q = 29(p - q) - 23 nhỏ nhất

                                                   => p- q nhỏ nhất

Do đó p - q = 1 => 2q = 29 -23 = 6

                            => q = 3

Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121

2. Số đó phải lớn hơn 10. Ta có:

129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b

61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c

x = 119 : b = 51 : c

119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7

51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17

Mà số đó lớn hơn 10 nên x = 17

Vậy x = 17

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 9 2018 lúc 17:05

Đáp án cần chọn là: A

Vì a chia cho 8 dư 6⇒(a+2)⋮8

a chia cho 12 dư 10 ⇒(a+2)⋮12

Do đó (a+2)∈BC(12;8) mà BCNN(12,8)=24.

Do đó (a+2)⋮24⇒a chia cho 24 dư 22

Bình luận (0)
TP
Xem chi tiết
CB
Xem chi tiết
LE
Xem chi tiết
TA
Xem chi tiết
TD
21 tháng 11 2020 lúc 23:35

1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 .                                                                                                  2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6.                                                                                      Mình ko chắc đâu nha!!!

Bình luận (0)
 Khách vãng lai đã xóa
KK
22 tháng 11 2020 lúc 6:40

câu 1 sai đề đúng ko bạn

phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
ST
5 tháng 1 2018 lúc 18:03

Gọi a là số tự nhiên cần tìm

Ta có: a chia 3 dư 2 => a+1 chia hết cho 3

a chia 7 dư 6 => a+1 chia hết cho 7

a chia 10 dư 9 => a+1 chia hết cho 10

=> a+1 thuộc BC(3,7,10)

Để a nhỏ nhất thì a+1 là BCNN(3,7,10)

3=3,7=7,10=2.5

BCNN(3,7,10)=2.3.5.7=210

=>a+1=210 => a=209

Bình luận (0)