phan tich da thuc thanh nhan tu a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)-2abc-a^3-b^3-c^3.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
phan tich da thuc thanh nhan tu:
a)(x2-9)2+12x(x-3)2
b)a(b2+c2)-b(c2+a2)+c(a2+b2)-2abc
c)(a+b+c)3-a3-b3-c3
\(a.\)
\(\left(x-9\right)^2+12x\left(x-3\right)^2\)
\(\Rightarrow\left(x-3\right)\left(x+3\right)+12x\left(x-3\right)^2\)
\(\Rightarrow\left(x-3\right)\left(x+3+12x+x-3\right)\)
\(\Rightarrow14x\left(x-3\right)\)
\(b.\)
\(a\left(b^2+c^2\right)-b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc\)
\(=ab^2+ac^2-bc^2-ba^2+\left(ca^2+cb^2-2abc\right)\)
\(=ab\left(b-a\right)+c^2\left(a-b\right)+c\left(a-b\right)^2\)
\(=c^2\left(a-b\right)-ab\left(a-b\right)+c\left(a-b\right)^2\)
\(=\left(a-b\right)\left(c^2-ab+ac-bc\right)\)
\(=\left(a-b\right)\left[c\left(c+a\right)-b\left(c+a\right)\right]\)
\(=\left(a-b\right)\left(c-b\right)\left(c+a\right)\)
\(c.\)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
a) \(\left(x^2-9\right)^2+12x\left(x-3\right)^2\)
\(=\left[\left(x-3\right)\left(x+3\right)\right]^2+12x\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+3\right)^2+12x\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left[\left(x+3\right)^2+12x\right]\)
\(=\left(x-3\right)^2\left(x^2+6x+3^2+12x\right)\)
\(=\left(x-3\right)^2\left(x^2+18x+9\right)\)
a)(x2-9)2+12x(x-3)2
=[(x-3)(x+3)]2+12x(x-3)2
=(x-3)2.(x+3)2+12x(x-3)2
=(x-3)2[(x+3)2+12x)
= (x-3)2[x2+6x+32+12x)]
=(x-3)2(x2+18x+9)
a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2) phan tich da THUC THANH NHAN TU
phan tich da thuc thanh nhan tu a3(b2-c2)+b3(c2-a2) + c3(a2-b2)
a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2) phan tich da thuc thanh nhan tu cac bn vao giup minh di
phan tich da thuc:(a^2+b^2-c^2)^2-4a^2b^2 thanh nhan tu
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[\left(a-b\right)^2+c^2\right]\)
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
a^3(b-c)+ b^3(c-a)+c^3(a-b) phan tich da thuc thanh nhan tu
Phan tich da thuc thanh nhan tu:
a)27x^3-27x^2+18x-4
b)2x^3-x^2-x-2
c)(x^2-3)^2+16
(x2 - 3)2 + 16
= (x2 - 3)2 + 42
= (x2 - 3 + 4)(x2 - 3 - 4)
= (x2 + 1)(x2 - 7)
a) 27x3-27x2+18x-4
=27x3-9x2-18x2+6x+12x-4
=9x2(3x-1)-6x(3x-1)+4(3x-1)
=(9x2-6x+4)(3x-1)
b) mk k bít lm
c)(x2-3)2+16
=(x2-3)2+42
=(x2-3+4)(x2-3-4)
=(x2+1)(x2-7)
k mk nha
thanks
phan tich da thuc thanh nhan tu a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(a^3-c^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left[\left(a^3-b^3\right)+\left(b^3-c^3\right)\right]+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)
\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(b^2+bc+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(b^2+bc+c^2\right)-\left(a^2+ab+b^2\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
a(b3−c3)+b(c3−a3)+c(a3−b3)
=a(b3−c3)−b(a3−c3)+c(a3−b3)
=a(b3−c3)−b[(a3−b3)+(b3−c3)]+c(a3−b3)
=a(b3−c3)−b(b3−c3)−b(a3−b3)+c(a3−b3)
=(b3−c3)(a−b)−(a3−b3)(b−c)
=(b−c)(b2+bc+c2)(a−b)−(a−b)(a2+ab+b2)(b−c)
=(a−b)(b−c)[(b2+bc+c2)−(a2+ab+b2)]
=(a−b)(b−c)(bc+c2−a2−ab)
=(a−b)(b−c)[b(c−a)+(c−a)(c+a)]
=(a−b)(b−c)(c−a)(a+b+c)
phan tich da thuc thanh nhan tu a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)