chứng minh rằng nếu 2n+1,3n+1 là số chính phương thì n chia hết 40
: Chứng minh rằng nếu 2n + 1 và 3n + 1 là hai số chính phương thì n chia hết cho 40
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng :Nếu 2n+1 và 3n+1(n thuộc N) đều là các số chính phương thì n chia hết cho 40
2n+1=a^2 (1), 3n+1=b^2 (2)
Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn
suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1
(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)
suy ra 5n chia hết cho 8, suy ra n chia hết cho 8
Ta cần chứng minh n chia hết cho 5
Số chính phương có các tận cùng là 0,1,4,5,6,9
Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5
Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)
Chứng minh rằng nếu 2n+1 và 3n+1 ( với n là số tự nhiên khác 0 ) đều là số chính phương thì n chia hết cho 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
Chứng minh rằng: nếu 2n +1 và 3n +1 (n\(\in\)N) là số chính phương thì n chia hết cho 40.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40
Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40
chứng minh rằng nếu n+1 và 2n+1 là 2 số chính phương thì n chia hết cho 24
Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)
Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)
=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 => \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)
Vậy n chia hết cho 8
Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)
Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1
=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)
\(\Rightarrow b^2-a^2\)chia hết cho 3
Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3
Như vậy \(n⋮3,n⋮8\) mà (3,8) = 1
=> \(n⋮24\)
bằng 1 nhé100% là đúng
k cho mình nha
Chứng minh rằng nếu n thuộc N , n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)
Do đó: n⋮3
Vậy ta có đpcm.
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
⇒2n+1=1(mod8)⇒2n+1=1(mod8)
=> n ⋮⋮ 4
=> n chẵn
=> n+1 cũng là số lẻ
⇒n+1=1(mod8)⇒n+1=1(mod8)
=> n ⋮⋮ 8
Mặt khác :
3n+2=2(mod3)3n+2=2(mod3)
⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ
⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Bạn tham khảo: !!!
Vì 2n-1 là số chính phương. Mà 2n-1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮4\)
\(\Rightarrow\)n chẵn
\(\Rightarrow n+1\)lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮8\)
Mặt khác
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 đều là các số chính phương lẻ
\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)
\(\Rightarrow n⋮3\)
Mà (3:8)=1
\(\Rightarrow n⋮24\)
Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n chia hết cho 8