H24

chứng minh rằng nếu 2n+1,3n+1 là số chính phương  thì n chia hết 40 

HT
2 tháng 3 2017 lúc 23:00

Đặt 2n+1 = k^2

3n+1 = m^2

Có : m^2 + k^2 = 5n + 2 

=> m^2 + k^2 chia 5 dư 2

Giả sử m^2 chia hết cho 5

và k^2 chia 5 dư 2 

-> chữ số tận cùng của k^2 là 2 hoặc 7 (loại)

=> m^2 chia 5 dư 1 

k^2 chia 5 dư 1 

=> m^2 - k^2 chia hết cho 5

=> n chia hết cho 5     (1)

Có: 2n+1 là số lẻ

=> k^2 lẻ

=> k lẻ

Đặt k = 2t+1

=> 2n+1 = (2t+1)^2

=> n = 2t(t+1)

=> n chia hết cho 2 

=> 3n +1 lẻ

=> k^2 lẻ 

=> k lẻ

k^2 = 3n+1

=> 3n = (k-1)(k+1)

Vì k lẻ => (k-1)(k+1) là 2 số chẵn liên tiếp 

=> 3n chia hết cho 8 

mà 3 không chia hết cho 8 

=> n chia hết cho 8 (2)

Từ (1) và (2) ta có : n chia hết cho 40

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
C9
Xem chi tiết
HH
Xem chi tiết
DT
Xem chi tiết
VT
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết