Xác định a để đa thức :
x^3+5x^2-6x+a chia hết cho (x-2)
Bài 3. (1 điểm). Xác định a để đa thức f(x)=x^3 –4x^2 +6x− a chia hết cho đa thức g(x)=x-2
\(\Leftrightarrow x^3-2x^2-2x^2+4x+2x-4-a+4⋮x-2\)
hay a=4
Xác định giá trị của a để đa thức \(P\left(x\right)=3x^3-8x^2+6x-a\) chia hết cho đa thức\(Q\left(x\right)=3x^2-5x+1\)
Xác định a sao cho đa thức x^4+6x^3+7x^2-6x+a chia hết cho đa thức x^2+3x+1
bạn tìm hiểu ở bài 12 sgk, đại khái ta sẽ có
x^4+6x^3+7x^2-6x+a chia x^2+3x+1 dư a+3
mà để 2 đa thức chia hết thì x+3=0=)x=-3
thực ra còn có cách khác hay hơn, nhưng mình làm ko ra nên dùng tạm cách này, thông cảm :)
x^4+6x^3+7x^2-6x+a=x^4+2.3x.x^2+9x^2-6x-2x^2+a
=(x^2+3x)^2-2(3x+x^2)+a=(3x+x^2)(x^2+3x-2)+a
vậy a=3(3x+x^2)
tôi chịu, sai thì... T.T
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
Cho đa thức P(x) = 6x^4 - 7x^3 + ax^2 + 3x + 2 và đa thức Q(x) = x^2 - x + b xác định a và b để P(x) chia hết cho Q(x)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Xác định giá trị của a để đa thức 6x2 - 5x +a chia hết cho đa thức 3x + 2
Đặt phép chia và chia ra kp còn dư
Cho dư =0 thì sẽ chia hết
Từ đó tìm a
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15