Những câu hỏi liên quan
NT
Xem chi tiết
NT
20 tháng 12 2022 lúc 13:35

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên n(n-1)(n+1) chia hết cho 3!

=>n(n-1)(n+1) chia hết cho 3

Bình luận (0)
HL
Xem chi tiết
NH
9 tháng 2 2018 lúc 20:54

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

Bình luận (0)
H24
9 tháng 2 2018 lúc 20:51

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

Bình luận (0)
H24
9 tháng 2 2018 lúc 20:53

\(n^2+n+3=n\left(n+1\right)+3\)

Vì n(n+1) chia hết cho 2 => số cuối là số chẵn => n(n+1) + 3 có số cuối là số lẻ 

Vậy n^2+n+3 ko chia hết cho 2

Bình luận (0)
AD
Xem chi tiết
BN
Xem chi tiết
DL
28 tháng 4 2015 lúc 20:17

(n+1)(n+2)+12

=(n+1)*n+(n+1)*2+12

=n2+1n+2n+2+12

=n2+(1+2)n+(2+12)

=n2+3n+14

=n*n+3n+14

=n(n+3)+14

Vì 14 không chia hết cho 9 nên n(n+3) không chia hết cho 9

nên n(n+3)+14 không chia hết cho 9

nên (n+1)(n+2)+12 không chia hết cho 9 với mọi n

Vậy với mọi n thuộc Z thì (n+1)(n+2)+12 không chia hết cho 9

cái này mình làm bậy, ko biết có đúng k

chúc bạn học tốt!^_^

Bình luận (0)
TL
28 tháng 4 2015 lúc 20:55

nếu n = 2 => (n+1)(n+2) + 12 = 24 không chia hết cho 9

=> (n+1)(n+2) + 12 không chia hết cho 9 với mọi n

Bình luận (0)
LL
30 tháng 4 2015 lúc 8:48

Với n=1 thì sao 2x3+12=18 

 

 

Bình luận (0)
LN
Xem chi tiết
MC
31 tháng 12 2017 lúc 21:55

ta có n có 3 dạng là :3k,3k+1,3k+2

Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3

Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3.(3k+1)(3k+2)(k+2) chia hết cho 3

Với n =3k+2 ta có (3k+2)(3k+3)(3k+7)=3.(3k+2)(k+1)(3k+7) chia hết cho 3

=> n(n+1)(n+5) chia hết cho 3 (dpcm)

Bình luận (0)
NQ
31 tháng 12 2017 lúc 21:53

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3 với mọi n thuộc N

k mk nha

Bình luận (0)
HH
Xem chi tiết
TT
Xem chi tiết
NM
15 tháng 8 2016 lúc 22:00

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2

Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2

Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2

Bài 4 bạn ghi thiếu đề

Bình luận (0)
LN
16 tháng 8 2016 lúc 10:38

1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số  chia hết cho 5 ?

2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?

3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?

4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bình luận (0)
LN
Xem chi tiết
DL
31 tháng 12 2017 lúc 21:51

Neu n=3k+1

suy ra n(n+1)(n+5)=(3k+1)(3k+2)(3k+6)=3(3k+1)(3k+2)(k+2) chia hết cho 3

Nếu n=3k và n=3k+2 thì chứng minh tương tự

Bình luận (0)
TK
Xem chi tiết
H24
20 tháng 7 2018 lúc 9:11

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

Bình luận (0)