Những câu hỏi liên quan
NM
Xem chi tiết
NU
14 tháng 3 2019 lúc 20:46

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-1-\frac{1}{2}-...-\frac{1}{1001}\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)

Bình luận (0)
HT
Xem chi tiết
H24
6 tháng 4 2017 lúc 18:03

đặt \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ Q=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)

ta có:

\(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ \Rightarrow P=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2001}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\)\(\Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1001}\right)\\ \Rightarrow P=\dfrac{1}{1002}+...+\dfrac{1}{2002}\\ \Rightarrow P=Q\)\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\left(đpcm\right)\)

Bình luận (1)
C2
Xem chi tiết
LC
11 tháng 1 2020 lúc 21:45

Ta có \(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+...\frac{1}{2002}=VP\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NC
28 tháng 10 2019 lúc 11:38

Xem bài tại link này nhé!  Bài làm đúng đã đc OLM chọn.

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
HN
28 tháng 10 2019 lúc 12:52

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)

Chúc em học tốt nhé!

Bình luận (0)
 Khách vãng lai đã xóa
TH
28 tháng 10 2019 lúc 13:00

giúp mk bài nữa nha

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
TM
Xem chi tiết
ST
20 tháng 3 2016 lúc 16:54

ta chuyển đề bài vế trái thành:

(1+1/2+1/3+1/4+...+1/2001+1/2002) - 2(1/2+1/4+1/6+...+1/2002)

=(1+1/2+1/3+....+1/2002) - (1+1/2+1/3+1/4+...+1/1001)

=1/1002+1/1003+...+1/2002

=> điều phải chứng minh

Bình luận (0)
ML
Xem chi tiết
NC
28 tháng 10 2019 lúc 11:40

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
NP
16 tháng 4 2016 lúc 20:13

S=\(\left(1+\frac{1}{2}+......+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{2002}\right)\)

=\(\left(1+\frac{1}{2}+.........+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+.........+\frac{1}{1001}\right)\)

=\(\frac{1}{1002}+\frac{1}{1003}+...........+\frac{1}{2002}=P\)

\(\Rightarrow S-P=0\)

Bình luận (0)
NL
Xem chi tiết
TL
23 tháng 5 2015 lúc 18:08

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(A=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2001}+\frac{1}{2002}=B\)

=> A/B = 1

Bình luận (0)