So sánh
a/ 1020 và 9010
b/ (-5)30 và (-3)50
So sánh
A=1020+9/1020-6
B=1021+5/1021+5
So sánh
a)(1/2)300 và (1/3)200
b)(1/3)75 và (1/5)50
a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!
Bài 1: So sánh
a) \(-2^{30}\) và \(-3^{30}\)
b) \(35^5\) và \(6^{10}\)
Bài 2: Tính giá trị biểu thức
a) \(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
b) \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)
\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)
Bài 2:
a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)
\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)
\(=-\dfrac{3}{5}\)
b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=6\)
hay \(x=\dfrac{3}{4}\)
Bài 1:
a: \(-2^{30}=-8^{10}\)
\(-3^{30}=-27^{10}\)
mà 8<27
nên \(-2^{30}>-3^{30}\)
b: \(35^5=35^5\)
\(6^{10}=36^5\)
mà 35<36
nên \(35^5< 6^{10}\)
So sánh
a) 99^20 và 9999^10
b) 3^500 và 5^300
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
So sánh
a,\(2^{300}\) và \(3^{200}\)
b,\(8^5\) và \(6^6\)
c, \(3^{450}\) và \(5^{300}\)
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu
cho m > n hãy so sánh
a/2n+3 và 2m+3
b/-n-5 và -m-5
`a)`
`m > n`
`<=>2m > 2n`
`<=>2m+3 > 2n+3`
Vậy `2n+3 < 2m+3`
_________________________
`b)`
`m > n`
`<=>-m < -n`
`<=>-m-5 < -n-5`
Vậy `-n-5 > -m-5`
a)\(m>n\Rightarrow2m>2n\Rightarrow2m+3>2n+2\)
b)\(m>n\Rightarrow-m< -n\Rightarrow-m-5< -n-5\)
So sánh
a)2.\(\sqrt{5}\) và 5
b)\(\dfrac{1}{3}.\sqrt{16}\) và \(\sqrt{12}\)
a) Ta có :\(20< 25\Rightarrow\sqrt{20}< \sqrt{25}\Leftrightarrow2\sqrt{5}< 5\)
b) Ta có : \(\dfrac{16}{9}< 12\Rightarrow\sqrt{\dfrac{16}{9}}< \sqrt{12}\Leftrightarrow\dfrac{1}{3}\cdot\sqrt{16}< \sqrt{12}\)
a: \(2\sqrt{5}=\sqrt{20}\)
\(5=\sqrt{25}\)
mà 20<25
nên \(2\sqrt{5}< 5\)
b: \(\dfrac{1}{3}\cdot\sqrt{16}=\sqrt{\dfrac{1}{9}\cdot16}=\sqrt{\dfrac{16}{9}}\)
\(\sqrt{12}=\sqrt{\dfrac{108}{9}}\)
mà 16<9
nên \(\dfrac{1}{3}\sqrt{16}< \sqrt{12}\)
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
Bài 4: So sánh
a) -2/3 và 5/-8
b) 398/-412 và -25/-137
c) -14/21 và 60/72
giải chi tiết
so sánh
a 3+ căn 5 và 2 căn 2 + căn 6
b 3 / căn 7 -2 - 4/căn 7 + căn 3
b: \(\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{7}+2-\sqrt{7}+\sqrt{3}=2+\sqrt{3}\)