Tính
\(\frac{1^2}{1.2}+\frac{2^2}{2.3}+\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)
\(=\frac{1.1}{1.101}\)
\(=\frac{1}{101}\)
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)
\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)
\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)
\(=\frac{1}{101}\)
(de bai)=\(\frac{1^2.2^2.3^2...100^2}{1.2.2.3.3.4...100.101}\)
=\(\frac{1.1.2.2.3.3.4...100.100}{1.2.2.3.3.4...100.101}\)=\(\frac{1}{101}\)
a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)
\(=\frac{1}{1.101}\)
\(=\frac{1}{101}\)
k cho mk nha
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^{^2}}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)
\(=1.\frac{1}{101}=\frac{1}{101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)
\(=\frac{1}{101}\)
Tính:
a) \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
b)\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{59^2}{58.60}\)
a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101
= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101
=( 2.3.4....100/2.3.4...100) . 1/101
= 1 . 1/101
=1/101
ý b tương tự nhé !
Bạn kia đéo biết thì thôi xen vào làm gì?
\(\frac{1^2}{1.2}\) . \(\frac{^{2^2}}{2.3}\) . \(\frac{3^2}{3.4}\)................\(\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.............\frac{100^2}{100.101}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}..........\frac{100.100}{100.101}\)
\(=\frac{\left(1.2.3............100\right).\left(1.2.3..........100\right)}{\left(1.2.3..........100\right)\left(2.3.4...........101\right)}\)
\(=\frac{1}{101}\)
Tính giá trị biểu thức
\(\frac{1^2}{1.2}\). \(\frac{2^2}{2.3}\). \(\frac{3^2}{3.4}\)......... \(\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)
\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)
A = \(\frac{1^2}{^{1.2}}\). \(\frac{2^2}{2.3}\) . \(\frac{3^2}{3.4}\). . ... . \(\frac{100^2}{100.101}\)
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.....\frac{100^2}{100.101}=\frac{\left(1.2.....100\right).\left(1.2.....100\right)}{\left(1.2.....100\right).\left(2.....101\right)}=\frac{1}{101}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}=?\)
=2(1/1.2+1/2.3+...+1/100.101)
=2(1/1-1/2+1/2-...+1/100-1/101)
=2(1-1/101)
=2.100/101
=200/101
2/1.2+2/2.3+2/3.4+...+2/100.101
= 2(2/1.2+2/2.3+2/3.4+...+2/100.101)
= 2(1/1.2+1/2.3+1/3.4+...+1/100.101)
= 2(1/1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
= 2.(1/1-1/101)
= 2.100/101
= 200/101
Cho mình 1 đ-ú-n-g nha bạn
\(y=\frac{1}{2.3}-\frac{2}{3.4}+\frac{3}{4.5}-...+\frac{99}{100.101}-\frac{100}{101.102}\)