\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{100^2}{100.101}\)
a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^{^2}}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
Tính:
a) \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
b)\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{59^2}{58.60}\)
\(\frac{1^2}{1.2}\) . \(\frac{^{2^2}}{2.3}\) . \(\frac{3^2}{3.4}\)................\(\frac{100^2}{100.101}\)
Tính giá trị biểu thức
\(\frac{1^2}{1.2}\). \(\frac{2^2}{2.3}\). \(\frac{3^2}{3.4}\)......... \(\frac{100^2}{100.101}\)
A = \(\frac{1^2}{^{1.2}}\). \(\frac{2^2}{2.3}\) . \(\frac{3^2}{3.4}\). . ... . \(\frac{100^2}{100.101}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}=?\)
Tính tổng:
F=\(\frac{1+1.2+3.4+...+100.101}{\left(1.2+2.3+...+99.100\right).2}\)