Những câu hỏi liên quan
DN
Xem chi tiết
SS
Xem chi tiết
DH
28 tháng 9 2021 lúc 10:17

a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ. 

\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)

(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).

Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).

Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).

b) Đặt \(\left(2n+1,3n+1\right)=d\).

Suy ra 

\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
HL
3 tháng 12 2017 lúc 18:55

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

Bình luận (0)
H24
28 tháng 10 2018 lúc 16:56

Chép hả Lý

Bình luận (0)
H24
Xem chi tiết
AH
18 tháng 7 2024 lúc 23:49

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

Bình luận (0)
AH
18 tháng 7 2024 lúc 23:50

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Bình luận (0)
AH
18 tháng 7 2024 lúc 23:51

3.

Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.

$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$

$\Rightarrow b\vdots d$

Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài) 

Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.

Bình luận (0)
LQ
Xem chi tiết
L1
22 tháng 10 2015 lúc 21:08

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

Bình luận (0)
Xem chi tiết
H24
16 tháng 6 2021 lúc 14:49

Chỉnh lại đề đi bạn

Bình luận (0)
 Khách vãng lai đã xóa
NG
21 tháng 3 2022 lúc 20:13

ok trưởng team

Bình luận (0)
 Khách vãng lai đã xóa
NG
21 tháng 3 2022 lúc 20:16

Gọi d là ƯCLN của n+1 và n+2

=> \hept{n+1⋮dn+2⋮d\hept{n+1⋮dn+2⋮d=> \hept{n+1⋮dn+1+1⋮d\hept{n+1⋮dn+1+1⋮d=>1⋮d1⋮d

=> ƯCLN (n+1,n+2) = 1

=> n+1 và n+2 là 2 số nguyên tố cùng nhau

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
DT
10 tháng 11 2018 lúc 12:57

vì n là số nguyên tố ,n>3 nên n có dạng: 3k+1 hoặc 3k+2

với n=3k+1 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k +1-1\right)\left(3k+1+1\right)=\)\(3k\left(3k+2\right)⋮3\)(1)

với n=3k+2 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k+2+1\right)\left(3k+2-1\right)=\)\(\left(3k+3\right)\left(3k+1\right)=\)\(3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

vì n là số nguyên tố lớn hơn 3 nên n là số lẻ nên n có dạng 2m+1

n=2m+1 thì

\(\left(n+1\right)\left(n-1\right)=\left(2m+1+1\right)\left(2m+1-1\right)\)\(=\left(2m+2\right)2m=2.2m\left(m+1\right)\)\(4m\left(m+1\right)⋮8\)(vì m(m+1) là hai sô tự nhiên liên tiếp nên tồn tại một số chia hết cho 2 nhân 4 nữa là chia hết cho 8)      (3)

mà (8,3)=1

từ (1),(2),(3) được đpcm

Bình luận (0)
HH
15 tháng 11 2018 lúc 19:39

vì n>3 nên n có dạng n=3k+1 hoặc n=3k+2
với n=3k+1 thì (n+1)(n-1)=(3k+2)3k chia hết cho 3
với n=3k+2 thì (n+1)(n-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố n>3 thì (n+1)(n-1) chia hết cho 3 (1)
mặt khác vì n>3 nên n là số lẻ =>n+1; n-1 là 2 số chẵn liên tiếp
=>trong hai số n+1; n-1 tồn tại một số là bội của 4
=> (n+1)(n-1) chia hết cho 8 (2)
từ (1) và (2) => (n+1)(n-1) chia hết cho 24 với mọi số nguyên tố n>3

Bình luận (0)