9 x ( x + 28 ) = 0
( - 5 ) x ( x + 9 ) = 0
2x - ( - 16 ) = 0
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
chiu lop 3 ma
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
a) (2x-3)²=9
b) (x²-16)²-16(x-4)²=0
c) (2x/5-3/4)²-3x/5-1/4=0
d) 1/16(x-2)²=9/25(5/3x-5)²
1) 3(x-5)(2x+9)+3x-15=0
2) (x2-16)(12-4x)=0
3) (9-x2)(4x-8)=0
4) (8-x3)(5x-125)=0
5) 4x=8
1)=>3(x-5)(2x+9)+3(x-5)=0=>(x-5)(6x+30)
=>x-5=0=>x=5
6x+30=0=>x=-5
2)=>x^2-16=0=>x=+-4
12-4x=0=>x=3
3)=>9-x^2=0=>x=+-3
4x-8=0=>x=2
4)=>8-x^3=0=>x=3
5^x-125=0=>x=2
5)=>2^x.2^x=8=>2^2x=8=>2x=3=>x=1,5
1) (3x-6)(x+5)+4(x-2)=0
2) 3(x-5)(2x+9)+3x-15=0
3) (x2-16)(12-4x)=0
4) (9-x2)(4x-8)=0
5) (8-x3)(5x-125)=0
6) 4x=8
1. Tìm x:
a, 25x2-9=0
b, (x+4)2-(x+9).(x-1)=16
c, x2-2x-(x-5)=0
d, (2x-1)2+(x+3)2+5.(x+7).(x-7)=0
e, (2x-1)2-(4x2-1)=0
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
(Bài 14; Tìm x biết
1) x ^ 2 - 9 = 0
4) 4x ^ 2 - 4 = 0
7) (3x + I) ^ 2 - 16 = 0
10) (x + 3) ^ 2 - x ^ 2 = 45
2) 25 - x ^ 2 = 0
5) 4x ^ 2 - 36 = 0
8) (2x - 3) ^ 2 - 49 = 0
11) (5x - 4) ^ 2 - 49x ^ 2 = 0
3) - x ^ 2 + 36 = 0
6) 4x ^ 2 - 36 = 0
9) (2x - 5) ^ 2 - x ^ 2 = 0
12) 16 * (x - 1) ^ 2 - 25 = 0
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6
Tìm x
1. (3x+5)(4-3x)=0
2. 9(3x-2)=x(2-3x)
3. 25x^2 -2=0
4. x^2- 25=6x-9
5. (2x-1)^2-(2x+5)(2x-5)=18
6. x^3-8=(x-2)^3
7. x^3-4x^2+4x=0
8. x^2- 25+2(x+5)=0
9. 2(x^2+8x+16)- x^2+4=0
10. x^2(x-2)+7x=14
(3x+5)(4-3x)=0
3x+5 =0 hoặc 4-3x=0
3x=-5 hoặc 3x=-4
x=-5/3 hoặc x=-4/3
9(3x-2)=x(2-3x)
9(3x-2)-x(3x-2)=0
(3x-2)(9-x)=0
3x-2=0 hoặc 9-x=0
3x=2 hoặc x= -9
x =2/3 hoặc x=-9
vậy x =2/3 ; x= -9
25x^2 - 2=0
(5x)^2 -√2^2=0
(5x-√2)(5x+√2)=0
5x=√2 hoặc 5x = -√2
x=√2/5 hoặc x= -√2/5
vậy x=√2/5 ; x=-√2/5
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
Tìm x , biết :
a, x mũ 2 - 2x + 1 = 25
b, 4 x mũ 2 - ( x + 4 ) mũ 2 = 0
c, 9 - 64 x mũ 2 = 0
d, 9 ( 4 x + 3 ) mũ 2 = 16 ( 3 x - 5 ) mũ 2
a. x mũ 2 - 2x + 1 = 25
= x^2 + 2.x.1 + 1^2
= ( x + 1 ) ^2
ko bt có đúng ko nữa, mấy câu kia tui ko bt lm