\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\) tim min biet a+b+c=2016
cho 3 so duong a,b,c biet a+b+c=6
timf min Q=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Trước tiên cần chứng minh với mọi m,n,p thuộc R và x,y,z>0 ta có
m^2/x +n^2/y +p^2/z >=(a+b+c)^2/x+y+z (1)
Dấu "=" xảy ra <=>m/x=n/y=p/z
Thật vậy m,n thuộc R,x,y>0 ta có
m^2/x+n^2/y >=(m+n)^2/x+y (2)
<=> (m^2y +n^2x)(x+y) >= xy(m+n)^2
sau đó khai triển ra ta được (nx-my)^2 >=0 (đúng)
Dấu "="xảy ra <=>m/x=n/y
Áp dụng BĐT (2) ta có
m^2/x +n^2/y +p^2/z >=(m+n)^2/x+y +p^2/z >= (m+n+p)^2/x+y+z
Dấu "=" xảy ra <=> m/x=n/y=p/z
Áp dụng BĐT (1) ta có
Q=a^2/a+b b^2/b+c c^2/c+a >= (a+b+c)^2/2(a+b+c)=3 (do a+b+c=6)
Dấu "=" xảy ra <=> a=b=c=2
tim a,b,c biet\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\) va a-b=15
Ta co:a-b=15
=>2(a-b)=30 hay 2a-2b=30
Co:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(hay\frac{2a}{4}=\frac{2b}{3}=\frac{3c}{4}\)va 2a-2b=30
Ap dung tinh chat cua day ti so bang nhau ta co:
\(\frac{2a}{4}=\frac{2b}{3}=\frac{3c}{4}=\frac{2a-2b}{4-3}=\frac{30}{1}=30\)
Con lai la tu ban nhe
ko hieu hoi mik
mik san sang giup
Cho \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\).Chứng minh \(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
\(\Delta ABC\) vuông tại A có BC=a, CA=b, AB=c. Tìm Min của BT:
M=\(8a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{b+c}{a}+2016\)
Lời giải:
Đặt $\frac{b}{a}=x; \frac{c}{a}=y$ $(x,y>0$)
$x^2+y^2=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1$ (do tam giác $ABC$ vuông tại $A$)
Như vậy, bài toán đã cho trở thành:
Cho $x,y$ là 2 số thực dương thỏa mãn $x^2+y^2=1$. Tìm min $M=\frac{8}{x^2}+\frac{8}{y^2}+x+y+2016$
--------------------------
Áp dụng BĐT AM-GM:
\(\frac{1}{4\sqrt{2}x^2}+\frac{x}{2}+\frac{x}{2}\geq 3\sqrt[3]{\frac{1}{4\sqrt{2}.2.2}}=\frac{3}{2\sqrt{2}}\)
\(\frac{1}{4\sqrt{2}y^2}+\frac{y}{2}+\frac{y}{2}\geq 3\sqrt[3]{\frac{1}{4\sqrt{2}.2.2}}=\frac{3}{2\sqrt{2}}\)
\((8-\frac{1}{4\sqrt{2}})(\frac{1}{x^2}+\frac{1}{y^2})\geq (8-\frac{1}{4\sqrt{2}}).\frac{4}{x^2+y^2}=4(8-\frac{1}{4\sqrt{2}})\)
Cộng theo vế thu được:
\(M-2016\geq \frac{3}{2\sqrt{2}}+\frac{3}{2\sqrt{2}}+4(8-\frac{1}{4\sqrt{2}})=32+\sqrt{2}\)
\(\Rightarrow M\geq 2048+\sqrt{2}\)
Vậy $M_{\min}=2048+\sqrt{2}$
Dấu "=" xảy ra khi $ABC$ là tam giác vuông cân.
cho a,b>0 và a+b=1 Tìm Min của
a, A=\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
b,B=\(\frac{2}{ab}+\frac{3}{a^2+b^2}\)
c,C=\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
bài 2 Tìm Min
D=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) (a,b,c>0)
a.
\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
b.
\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
c.
Ta có:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y
Áp dụng ta có:
\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
2.
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Áp dụng nó ta chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng vào bài làm:
\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
biet x=\(\frac{a}{b+c}\)=\(\frac{b}{c+a}\)=\(\frac{c}{a+b}\)
tim x trong 2 truong hop sau
a] a+b+c=0
b] a+b+c khac 0
a] x= a/b+c=b/c+a=c/a+b=a+b+c/b+c+c+a+a+b=0
=> x=0
b]
Tim a,b,c biet \(\frac{a}{2}\)= b = \(\frac{c}{3}\)va a - 2b + c =210
\(\frac{a}{2}\) = b
=> a=2b
ta có: a - 2b +c = 210
=> a-a + c =210 => c= 210
=> b = 210 : 3 =70
=> a= 70 x 2 = 140
vậy a = 140
b= 70
c= 210
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{1}=\frac{c}{3}=\frac{a}{2}=\frac{2b}{2.1}=\frac{c}{3}=\frac{a-2b+c}{2-2+3}=\frac{210}{3}=70\)
\(\frac{a}{2}=70\Rightarrow a=70.2=140\)
\(\frac{b}{1}=70\Rightarrow b=70\)
\(\frac{c}{3}=70\Rightarrow c=70.3=210\)
Vậy a=140;b=70 và c=210
a,b,c>0. Min
P=\(\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\)
Bạn tham khảo tại đây:
Câu hỏi của Ngô Ngọc Anh - Toán lớp 9 - Học toán với OnlineMath