Những câu hỏi liên quan
NB
Xem chi tiết
H24
3 tháng 2 2018 lúc 23:53

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

Bình luận (0)
SK
3 tháng 2 2018 lúc 21:21

dài quá ko mún làm

Bình luận (0)
DT
Xem chi tiết
NT
15 tháng 12 2016 lúc 12:58

làm câu

Bình luận (0)
TL
Xem chi tiết
NT
5 tháng 2 2022 lúc 23:26

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)

Bình luận (0)
NB
Xem chi tiết
VL
Xem chi tiết
H24
29 tháng 7 2019 lúc 21:15

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

Bình luận (0)
EC
29 tháng 7 2019 lúc 21:16

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...

Bình luận (0)
EC
29 tháng 7 2019 lúc 21:25

3) Đặt A = 3n + 1

=> 2A = 6n + 2 = -3(1 - 2n) + 5

Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n

Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n

=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}

Với: +)1 - 2n = 1 => 2n = 0 => n = 0

+)1 - 2n = -1 => 2n = 2 => n = 1

+) 1  - 2n = 5=> 2n = -4 => n = -2

+) 1 - 2n = -5 => 2n = 6 => n = 3

3) Đặt B = 3n + 2

=> 5B = 15n + 10 = -3(11 - 5n) + 21 

Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B  \(⋮\)11 - 5n

Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n

=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}

Lập bảng : 

11-5n 1 -1 3 -3 7 -7 21 -21
  n 2 12/5(ktm)8/5(ktm)14/5(ktm)4/5(ktm)18/5(ktm)-232(ktm)

Vậy ...

Bình luận (0)
HN
Xem chi tiết
AH
2 tháng 1 2024 lúc 16:52

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

Bình luận (0)
AH
2 tháng 1 2024 lúc 16:53

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

Bình luận (0)
AH
2 tháng 1 2024 lúc 16:54

3/

$2n^2+n-6\vdots 2n+1$

$\Rightarrow n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1\in Ư(6)$

Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$

Bình luận (0)
TP
Xem chi tiết
PP
22 tháng 7 2016 lúc 18:03

a, n-4 chia hết n-4

=>2(n-4)chia hết n-4

hay 2n-4 chia het n-4

vì 2n-1 chia het n-4

Nên (2n-1)-(2n-4) chia hết cho n-4

do đó  3 chia hết n-4

hay (n-4) thuộc ước của 3 là 3;1

+, n-4=3

n=7

+,n-4=1

n=5

Vậy n = 7;5

 

Bình luận (0)
PP
22 tháng 7 2016 lúc 18:13

b, Có 3n chia hết 5-2n

=>2.3n chia hết 5-2n

 hay 6n chia hết 5-2n

vì 5-2n chia hết 5-2n

nên 3(5-2n) chia hết 5-2n

do đó 15-6n chia hết 5-2n

Suy ra 6n+(15-6n) chia hết 5-2n

hay 15 chia hết 5-2n

nên (5-2n) thuộc ước của 15 là 15;5;3;1

Xét +, 5-2n=15

2n =-10

n=-5(loại vì n thuộc N)

+, 5-2n =5

2n=0 

n=0(TM)

+, 5-2n=1

2n=4

n=2 (TM)

+,5-2n=3

2n=2

n=1(TM)

Vậy n=0;1;2

Bình luận (0)
H24
Xem chi tiết
PN
15 tháng 11 2015 lúc 22:44

Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)

Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Với  \(2n+3=1\)thì \(n=-1\)

Với  \(2n+3=-1\) thì \(n=-2\)

Với  \(2n+3=5\)thì \(n=1\)

Với  \(2n+3=-5\) thì \(n=-4\)

Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và  \(n\in Z\)

 

Bình luận (0)
PL
Xem chi tiết