Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PN
Xem chi tiết
DM
Xem chi tiết
KL
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
DH
15 tháng 4 2016 lúc 22:06

Giả sử : n^2 + 2006 là số chính phương 

=> n2 + 2006 = k2 ( k thuộc N )

=> 2006 = k2 - n2 = ( k - n ).( k + n )

Ta có : 2006 = 2 x 1003 

=> k - n = 2 => n = 2 + k

     k + n = 1003

=> k + 2 + k = 1003

=> 2k = 1001 => k = 1001/2 ( loại )

Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương

Bình luận (0)
H24
16 tháng 4 2016 lúc 7:06

kudo shinichi làm sai đề rồi phải như thế này nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

k cho tớ nha

ai k mh mh k lại

Bình luận (0)
NH
Xem chi tiết
NH
14 tháng 7 2018 lúc 9:42

1) gọi số đó là ab 

theo bài ra ta có ab+ba=a+10b+b+10a=(10a+a)+(10b+b)=11a+11b

Vì 11a và 11b chia hết cho 11 nên 11a+11b chia hết cho 11

Vậy ab+ba chia hết cho 11

2) - a.b.c+ 2=333 

          a.b.c =333-2=331

- a.b.c+b=335         

b=335-331=2

- a.b.c+c=341

          c= 341-331 =10

=> Ta có: a.b.c=331

mà b=4; c=10 

=>4.10.c=331

=>40.c=331

mà 331 lại là số nguyên tố 

=> ko tồn tại các số tự nhiên a, b ,c nào

3) Có số abcd = 100ab +cd =200cd +cd (vì ab=2cd)

hay = 201cd

mà 201 chia hết cho 67

Do đó nếu ab=2cd thì abcd chia hết cho 67

Bình luận (0)
NT
16 tháng 11 2021 lúc 20:28
??????????¿
Bình luận (0)
 Khách vãng lai đã xóa
OO
Xem chi tiết
PT
18 tháng 7 2015 lúc 8:06

Chào nha, letrunghieu :

       Gọi số cần tìm là x, thương khi chia a cho 21,84 lần lượt là a,b ta có:

         x = 21a+7  ; x=84b+2

=> x = 7(3a+1) hay x chia hết cho 7.

Mặt khác ta có: 84b chia hết cho 7 nhưng 2 lại không chia hết cho 7 nên 84b+2 không chia hết cho 7.

=> Không tồn tại số tự nhiên x vừa chia hết cho 7 vừa không chia hết cho 7

Bình luận (0)
LT
Xem chi tiết
DV
15 tháng 7 2015 lúc 22:22

Giả sử tồn tại số tự nhiên a thì số tự nhiên đó có dạng \(21k+7\) và \(84t+3\) (k,t \(\in\) N)

Ta có : a = 21k + 7
và a = 84t + 3 
=> 21k + 7 = 84t + 3 
=> 21k - 84t = -4 
=> 21 ( k - 4t ) = -4 
=> k - 4t = \(-\frac{4}{21}\)
Mâu thuẫn vì tổng các số tự nhiên là số tự nhiên.
Nên điều giả sử là sai 
Vậy không thể tồn tại một số chia cho 21 dư 7 mà chia cho 84 lại dư 3 (đpcm).

Bình luận (0)
DV
15 tháng 7 2015 lúc 22:12

Dùng phương pháp chứng minh phải chứng.

Bình luận (0)
LT
20 tháng 10 2017 lúc 20:22

Đinh Tuấn Việt tỏ vẻ

Bình luận (0)