Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 2 2019 lúc 4:25

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

a) Xét (d): y = -2x + 3 có a = -2; b = 3

(d’) : y = 3x – 1 có a’ = 3 ; b’ = -1.

Có a ≠ a’ ⇒ (d) cắt (d’)

⇒ Hệ Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có nghiệm duy nhất.

b) Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Xét (d): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có a = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b = 3

(d’): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có a’ = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b’ = 1.

Có a = a’; b ≠ b’ ⇒ (d) // (d’)

⇒ Hệ phương trình Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 vô nghiệm.

c) Ta có: Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét (d): y = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 x có a = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b = 0

(d’) : y = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 x có a’ = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b’ = 0

Ta có: a ≠ a’ ⇒ (d) cắt (d’)

⇒ Hệ Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có nghiệm duy nhất.

d) Ta có:

Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a = a’=3; b = b’ = -3

Nhận thấy hai đường thẳng trên trùng nhau

⇒ Hệ phương trình có vô số nghiệm.

Kiến thức áp dụng

+ Xét hệ (I): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi (d): ax + by = c và (d’): a’x + b’y = c’.

Số nghiệm của hệ (I) phụ thuộc vào vị trí tương đối của (d) và (d’).

    (d) cắt (d’) ⇒ hệ (I) có nghiệm duy nhất.

    (d) // (d’) ⇒ hệ (I) vô nghiệm

    (d) ≡ (d’) ⇒ hệ (I) có vô số nghiệm.

+ Cho đường thẳng (d): y = ax + b và (d’): y = a’x + b’.

    (d) cắt (d’) ⇔ a ≠ a’

    (d) // (d’) ⇔ a = a’ và b ≠ b’

    (d) trùng (d’) ⇔ a = a’ và b = b’.

Bình luận (0)
NN
Xem chi tiết
NT
Xem chi tiết
H24
8 tháng 1 2017 lúc 8:31

Cả hai à  tham thế i: 

Cộng Đại Số

\(\hept{\begin{cases}8x-7y=5\\12x+13y=-8\end{cases}\Leftrightarrow\hept{\begin{cases}24x-21y=15\left(1\right)\\24x+26y=-16\left(2\right)\end{cases}}}\)

Lấy (2) trừ (1)

\(\left(24x-24x\right)-21y-26y=15-\left(-16\right)\)

\(\Leftrightarrow47y=-31\Rightarrow y=\frac{31}{47}\)thay vào đầu x=5+7.31/47

Bình luận (0)
NT
9 tháng 1 2017 lúc 20:54

SAI RỒI Y= -31/47

Bình luận (0)
NN
Xem chi tiết
VD
8 tháng 1 2017 lúc 8:31

dùng máy tính í

shift 5 1 rồi nhạp giá trị

Bình luận (0)
DM
8 tháng 1 2017 lúc 8:31

giống hệt bài của nguyễn thị phương thảo

Bình luận (0)
VD
8 tháng 1 2017 lúc 8:40

\(8x-7y=5\Leftrightarrow48x-42y=30\)(1)

\(12x+13y=-8\Leftrightarrow48x+52y=-32\)(2)

trừ 1 2 theo vế \(\Leftrightarrow-94y=62\)

giải nốt

Bình luận (0)
BD
Xem chi tiết
HV
25 tháng 11 2017 lúc 13:27

2/

\(x^3-2x+1=0\)

\(\Rightarrow x^3-x-x+1=0\)

\(\Rightarrow x\left(x^2-1\right)-\left(x-1\right)=0\)

\(\Rightarrow x\left(x-1\right)\left(x+1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2+x-1\right)\)

\(\Rightarrow x=1\)

Vậy S = {1}

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 7 2019 lúc 12:56

Giải bài 16 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (2) ta rút ra được y = 2x + 8 (*)

Thế (*) vào phương trình (1) ta được :

3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.

Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.

Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).

 

Bình luận (0)
TH
Xem chi tiết
NA
25 tháng 3 2023 lúc 20:50

\(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-4x+4\right)+y^2=1\\\left(x^3-6x^2+12x-8\right)+y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+y^2=1\\\left(x-2\right)^3+y^3=1\end{matrix}\right.\)

Đặt \(a=x-2;b=y\). Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}a^2+b^2=1\\a^3+b^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-1\\\left(a+b\right)\left(a^2+b^2-ab\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-1\\\left(a+b\right)\left(1-\dfrac{\left(a+b\right)^2-1}{2}\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(a+b\right)\left[3-\left(a+b\right)^2\right]=2\)

\(\Leftrightarrow3\left(a+b\right)-\left(a+b\right)^3=2\)

\(\Leftrightarrow\left(a+b\right)^3-3\left(a+b\right)+2=0\)

\(\Leftrightarrow\left(a+b\right)^3-\left(a+b\right)^2+\left(a+b\right)^2-\left(a+b\right)-2\left(a+b-1\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2\left(a+b-1\right)+\left(a+b\right)\left(a+b-1\right)-2\left(a+b-1\right)=0\)

\(\Leftrightarrow\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)-2\right]=0\)

\(\Leftrightarrow\left(a+b-1\right)^2\left(a+b+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=1\\a+b=-2\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\left(a+b\right)^2-2ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=0\end{matrix}\right.\)

\(\Rightarrow\left(a;b\right)=\left(0;1\right),\left(1;0\right)\)

\(\Rightarrow\left(x-2;y\right)=\left(0;1\right),\left(1;0\right)\)

\(\Rightarrow\left(x;y\right)=\left(2;1\right),\left(3;0\right)\)

Với \(\left\{{}\begin{matrix}a+b=-2\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2\\\left(a+b\right)^2-2ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2=S\\ab=\dfrac{3}{2}=P\end{matrix}\right.\left(2\right)\)

Ta có: \(S^2-4P=\left(-2\right)^2-4.\dfrac{3}{2}=-2< 0\)

\(\Rightarrow\)Không tồn tại số a,b nào thỏa hệ phương trình (2).

Vậy nghiệm (x;y) của hpt đã cho là \(\left(2;1\right),\left(3;0\right)\)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 4 2017 lúc 3:17

Vẽ đồ thị của hàm số Giải sách bài tập Toán 12 | Giải sbt Toán 12 và đường thẳng Giải sách bài tập Toán 12 | Giải sbt Toán 12 trên cùng một hệ trục tọa độ (H.65), ta thấy chúng cắt nhau tại điểm có hoành độ x = 1. Với x > 1 đồ thị của hàm số Giải sách bài tập Toán 12 | Giải sbt Toán 12 nằm phía dưới đường thẳng Giải sách bài tập Toán 12 | Giải sbt Toán 12 . Vậy tập nghiệm của bất phương trình đã cho là (1;+ ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 8 2019 lúc 16:16

Bình luận (0)